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 This paper presents an improved decomposition algorithm 
for solving two-stage relative robust optimization problems under 
uncertainty.  The structures of the first stage and second problem 
are a mixed integer linear programming model (MILP) and a 
linear programming model (LP) respectively.  Each uncertain 
parameter in the model can independently take its value from a 
finite set of real values with unknown probability distribution.  
This structure of parametric uncertainty is called full-factorial 
scenario design of data.  Similar to previous work, this improved 
algorithm composes of three stages.  The difference is that 
Benders’ Decomposition (BD) algorithm is used to solve relaxed 
model in the first stage instead of the solver from CPLEX.  The 
second and third stages are the same. The improved algorithm 
has been applied to solve a number of relative robust facility 
location problems under this structure of parametric uncertainty.  
All results illustrate significant improvement in computation time 
of the improved algorithm over existing approaches.  For a 
problem with 340 possible scenarios, an improved algorithm 
shows a significant reduction in computational time by 61 
percents comparing with the previous three-stage algorithm 
without Benders’ decomposition. 
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1 Introduction 

In this paper, we address the two-stage decision making problem under uncertainty, 

where the uncertainty appears in any parameter of a general MILP formulation.   
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The lower case letters with vector cap such as xv  represent vectors and the notation ix  

represents the i th element of the vector xv .  The corresponding bold upper case letters such as 

W  denote matrices and the notation ijW  represents the ( , )i j th element of the matrix W . 

 

In the MILP formulation, let the vector xv  represent the first-stage binary decisions that 

must be made before the realization of uncertainty and let the vector yv  represent the second-

stage continuous recourse decisions that can be made after all uncertain parameters’ values 

are realized.  It is worth emphasizing that many practical two-stage decision problems can 

often be represented by this mathematical formulation.  For example in a facility location 

problem under uncertainty in a given network ( , )G N A= , the first-stage decision 
| |{0,1}Nx∈v represents the decision of whether or not a facility will be located at each node in 

the network G.  These facility location decisions are considered as long-term decisions and 

must be made before the realization of uncertain parameters in the model.  Once all first-stage 

decisions are made and all values of uncertain parameters are realized, the second-stage 

decisions, yv , are then made.  In this problem, the second-stage decisions represent the flow of 

each material transported on each arc in the network G. 
 

In this paper, we consider the problem such that each uncertain parameter in the model is 

restricted to independently take its value from a finite set of real values with unknown 

probability distribution.  This captures situations where decision makers have to make the 

long term decision under uncertainty when there is very limited or no historical information 

about the decision problem and the only available information is the possible value of each 

uncertain parameter based on expert opinion.  For example, expert opinion may give the 

decision makers three possible values for a given uncertain parameter based on optimistic, 

average, and pessimistic estimations.  In this case, decision makers cannot search for the first-
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stage decisions with the best long run average performance, because of insufficient 

knowledge about the probability distribution of uncertain parameters in the model.  Instead, 

decision makers can search for the long term decisions that perform relatively well across all 

possible future scenarios:  robust first-stage decisions under the relative robustness definition 

(min-max relative regret robust solution) defined by Kouvelis and Yu (1997).   
 

Two-stage relative robust optimization represents optimization problems where some of 

the model parameters are uncertain when making the first stage decisions.  The criterion for 

the first stage decisions is to minimize the maximum relative regret between the optimal 

objective function value with perfect information and the resulting objective function value 

under the robust decisions over all possible future scenarios of the model parameters.  

Kouvelis and Yu (1997) summarize the state-of-the-art in the relative robust optimization and 

provide comprehensive discussion and motivation for applying the relative robust 

optimization in practice.  Other works related to the robust optimization include the works by 

Ben-Tal et al. (2000) Mausser and Laguna (1999) Averbakh (2000, 2001), Bertsimas and Sim 

(2003), and Assavapokee et al. (2008, 2009). 
 

Traditionally, solving a scenario-based extensive form model of the problem or MILP 

will return relative robust solution.  The extensive form model is explained in section 2.  The 

disadvantage of this method is that the problem size grows rapidly when the number of 

scenarios used to represent uncertainty increases.  Therefore, the required computation time to 

find optimal solutions takes much longer.  For example, a problem with 15 uncertain 

parameters each with 4 possible values generates over one billion scenarios.  Solving the 

extensive form model directly obviously is not the efficient way for solving this type of robust 

decision problems even with the use of Benders’ Decomposition (BD) technique (Benders, 

1962). The scenario relaxation algorithm presented in Assavapokee et al. (2008) will certainly 

fail to obtain the robust solution of this considered problem. The algorithm requires solving a 

MILP problem for each possible scenario at the initial step.  The algorithm then uses 

enumeration search to identify the new scenario which requires solving a LP problem for each 

possible scenario per iteration.  This process can be quite inefficient for problems with an 

extremely large number of possible scenarios.  For this reason, neither the extensive form 

model, the direct application of the BD algorithm, nor the scenario relaxation algorithm is the 
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efficient methodology for solving relative robust optimization problems of this type. 

 

Assavapokee et al. (2009) then propose a three-stage decomposition algorithm to solve 

the considered problem. Their algorithm is designed explicitly to efficiently handle a 

combinatorial sized set of possible scenarios.  The algorithm sequentially solves and updates a 

relaxation problem until both feasibility and optimality conditions of the overall problem are 

satisfied.  The feasibility and optimality verification steps involve the use of fractional 

programming techniques and bi-level programming models, which coordinates a Stackelberg 

game (1943) between the decision environment and decision makers. These techniques 

efficiently utilize the structure of uncertainty for the scenario searching procedure and are 

much more efficient than the enumeration search utilized by the scenario relaxation algorithm.  

In addition, the work by Bajalinov (2003) summarizes theoretical concepts on fractional 

programming.  Their proposed algorithm is proven to terminate at an optimal relative robust 

solution if one exists in a finite number of iterations.  In addition, preprocessing procedures, 

model transformation techniques, and problem decomposition algorithms are efficiently 

utilized to improve the computational tractability of the proposed algorithm.   
 

However, for a problem with 340 possible scenarios, Assavapokee et al. (2009) report the 

computational time at about 58 hours or about 2 and a half days to solve.  This shortcoming 

will be improved in this paper.  In this paper, eight parameters are considered,  

[ , , , , , , ,c q h g
vv v v T S W V ] in the model.  Among these parameters, we assume that the values of 

parameters cv  are known and constant during first-stage decisions but other parameter are 

independently chosen from a finite set of real numbers with unknown probability distribution.  

In the following section, we present the theoretical methodology of the improved algorithm.  

The performance of the improved algorithm is then demonstrated through a number of facility 

location problems in section 3 to show the efficiency of the improved algorithm.   

2 Research Methodology 

We consider the decision problem where the basic components of uncertainty are 

represented by a finite set of all possible scenarios of input parameters, referred as the 

scenario set Ω .  The considered problem contains two types of decision variables.  The first 

stage variables model binary choice decisions, which have to be made before the realization 

of uncertainty.  The second stage decisions are continuous recourse decisions, which can be 
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made after the realization of uncertainty.  For each scenario ω∈Ω , let vector xω
v  denote 

binary choice decision variables and let vector yω
v  denote continuous recourse decision 

variables and let , , , , , , ,  and c q h gω ω ω ω ω ω ω ω

vv v v T S W V  denote model parameters setting.  If the 

realization of parameters is known to be scenario ω  a priori, the optimal choice for the 

decision variables xω
v  and yω

v  can be obtained by solving the following model (1). 

 
*

| |

,
min       s.t.     

                                                    

                                                    {0,1}   and  

T T

x

x y
O c x q y y x h

y x g

x

ω ω

ω

ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω

ω

= + − ≥

− =

∈
v

v v

vv v v v v v

v v v

v v

W T

V S

0yω ≥
v

 

 

   (1)

 

When parameters’ uncertainty exists, the search for the relative robust solution comprises 

finding decisions, xv , such that the function ( )* * *max ( ( ) ) /Z x O Oω ω ωω∈Ω
−v

is minimized where 
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In the case when the scenario set Ω  is a finite set, the optimal setting of decision 

variables xv  (relative robust solution) can be obtained by solving the following model (2). 
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   (2)

 

This model (2) is referred to in this paper as the extensive form model of the problem.  If 

an optimal solution of the model (2) exists, the optimal setting of vector xv  is an optimal 

relative robust first stage decisions.  In this work, we consider the class of decision problems 

such that the *Oω  value is nonnegative ω∀ ∈Ω , which is quite common for minimum cost 
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decision problems under relative robust criterion.  Unfortunately, the size of the extensive 

form model can become unmanageably large with the size of Ω  as does the required 

computation time to find its optimal solution.  Because of the failure of the extensive form 

model, the BD algorithm, and the scenario relaxation algorithm for solving a large scale 

problem of this type, a new decomposition algorithm which can effectively overcome 

limitations of these approaches is proposed in the following subsection.  A key insight of the 

improved algorithm is to realize that, even when the size of Ω  is extremely large, it is 

possible to efficiently identify a smaller subset of important scenarios (Ω⊆Ω ) that is 

actually required as part of the iterative scheme to solve the overall problem with the use of 

bi-level programming, fractional programming, and relaxation concepts.  The explanation 

comes from the algorithm itself.  In the first two steps of the algorithm which are explained in 

2.1.2, a small number of scenarios (Ω ) are randomly chosen to solve for *Oω which is then 

used to update the lower bound in Step 2.  In step 3, the feasibility of the problem is checked.  

Lastly, in Step 4, bi-level programming is used to update upper bound and identify only 

important scenario that will be added into Ω  as shown in Assavapokee (2009).  This scenario 

yields the maximum relative regret value possible.  These steps are repeated until the gap 

between the lower bound and upper bound reaches the stopping criteria.  Therefore, only a 

small number of scenarios are gradually added into the initial subset of scenarios.   More 

details are explained in Assavapokee (2009).  In addition, the improved algorithm does not 

require calculating the values of *Oω  ω∀ ∈Ω in order to solve the overall problem.  These 

calculations can be very expensive in term of the computation time when the size of Ω  is 

extremely large.  The algorithm only require the calculation of *Oω ω∀ ∈Ω⊆Ω which can be 

obtained quickly when the size of Ω  is small. 

2.1.1 Relative Robust Optimization Algorithm for Full­Factorial Scenario Design 
We begin this subsection by defining some additional notations which will be extensively 

used in this section and the following sections of the paper.  The parameters in the considered 

model can be combined into a random vector ξ  = [ , , , , , , ,c q h g
vv v v T S W V ].  Because, in most 

cases, the values of parameters of type cv  are known with certainty when making the first-

stage decisions, the improved algorithm only handles uncertainty for other seven types of 

parameters.  In this work, we assume that each component of ξ  (except parameters of type cv ) 
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can independently take its values from a finite set of real numbers with unknown probability 

distribution.  In other words, for each element p of the vector ξ ,  p can take any value from 

the set of (1) (2) ( ){ , ,..., }pp p p  such that (1) (2) ( )... pp p p< < <  where the notation p  denotes the 

number of possible values for the parameter p.  The scenario set Ω  is generated by all 

possible values of the parameter vector ξ .  Let us define ( )ξ ω  as the specific setting of the 

parameter vector ξ  under scenario ω∈Ω  and { ( ) | }ξ ω ωΞ = ∈Ω  as the support of the 

unknown parameter vector ξ .  As described below, we propose a three-stage decomposition 

algorithm for solving the relative robust optimization problem under scenario set Ω  that 

utilizes the efficient idea based on the following inequality where Ω⊆Ω . 
 

* * * * * *

* * *

( ) ( ) ( )max min max min maxU L

x x
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In the considered problem, we would like to solve the middle problem, 

{ }* * *min max ( ( ) ) /
x

Z x O Oω ω ωω∈Ω
−v

v , which is intractable because | |Ω  is extremely large.  Instead, 

we successively solve the left and right problems for UΔ  and LΔ .  The left problem provides 

the upper bound on the min-max relative regret value and can be solved by utilizing a 

reformulation as a tractable Bi-level programming model after a feasible solution xv  is 

provided.  The right problem provides the lower bound on the min-max relative regret value 

and can be solved by utilizing the BD based on the fact that | |Ω  is relatively small compared 

to | |Ω .  The improved decomposition algorithm framework can be summarized as follows. 

2.1.2 Improved Three­Stage Decomposition Algorithm Framework 

Step 0: (Initialization) Choose a subset Ω⊆Ω  and set UΔ = ∞ , and 0LΔ = .  Let optxv  

denote the incumbent solution.  Determine the value of 0ε ≥ , which is a pre-specified 

tolerance and proceed to Step 1. 
 

Step 1: Solve the model (1) to obtain *  Oω ω∀ ∈Ω .  If the model (1) is infeasible for any 

scenario in the scenario set Ω , the algorithm is terminated; the problem is ill-posed.   

Otherwise the optimal objective function value to the model (1) for scenario ω is 
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designated as *  Oω and the algorithm proceeds to Step 2. 

 

Step 2: (Updating Lower Bound) By using the information on *  Oω ω∀ ∈Ω , apply the BD 

algorithm explained in detail in Section 2.1 to solve the smaller version of the model (2) by 

considering only the scenario set Ω  instead of Ω .  This smaller version of the model (2) is 

referred to as the relaxed model ( 2 ' ) in this paper.  If the relaxed model ( 2 ' ) is infeasible, the 

algorithm is terminated with the confirmation that no robust solution exists for the problem.  

Otherwise, set *x xΩ =v v which is an optimal solution from the relaxed model ( 2 ' ) and set 

{ }* * * *max ( ( ) ) /L Z x O Oω ω ωω∈Ω
Δ = −v  which is the resulting optimal objective function value from the 

relaxed model ( 2 ' ). 

If {ΔU- ΔL}≤ ε, the algorithm is terminated and optxv  is the globally ε-optimal robust 

solution.  Otherwise the algorithm proceeds to Step 3. 

 

Step 3: (Feasibility Check) Solve the Bi-level-1 model as described in Assavapokee et al. 

(2009) by using the xΩ
v  information from Step 2.  If the optimal objective function value of 

the Bi-level-1 model is nonnegative (feasible case), the algorithm proceeds to Step 4.  

Otherwise (infeasible case), set *
1{ }ωΩ←Ω∪  where *

1ω  is the infeasible scenario for xΩ
v  

generated by the Bi-level-1 model in this iteration and the algorithm returns to Step 1. 

 

Step 4: (Updating Upper Bound) Solve the Bi-level-2 model as described in Assavapokee 

et al. (2009) by using the xΩ
v  information from Step 2.  Let 

{ }* * * *
 2 arg max ( ( ) ) /Z x O Oω ω ω

ω
ω Ω

∈Ω
∈ −v  and { }* * * *max ( ( ) ) /U Z x O Oω ω ωω Ω∈Ω

Δ = −v  represent the results 

generated by the Bi-level-2 model respectively in this iteration.   

If *U UΔ < Δ , then set optx xΩ=v v  and set *U UΔ = Δ .   

If {ΔU- ΔL}≤ ε, the algorithm is terminated and optxv  is the globally ε-optimal robust 

solution.  Otherwise, set *
2{ }ωΩ←Ω∪  and the algorithm returns to Step 1. 
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Figure 1:  Schematic Structure of the Decomposition Algorithm. 
 

 

We define the algorithm Steps 1 and 2 as the first stage of the algorithm and the 

algorithm Step 3 and Step 4 as the second stage and the third stages of the algorithm 

respectively.  Figure 1 illustrates a schematic structure of this decomposition algorithm.  Each 

of the three stages of the algorithm is detailed in the following subsections.   Note that the 

first stage of the algorithm includes the BD algorithm that is used to better solve relaxed 

model ( 2 ' ).  For the second and third stages of the algorithm, all the steps are exactly the 

same as the ones in Assavapokee et al. (2009).  The only differences are the notations which 

are modified so that they are more concise and simpler to understand.  

2.1.3 The Improved First Stage Algorithm 

The first stage algorithm will find { }* * *arg min max{( ( ) ) / }
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Δ = − v .  In addition, it will determine whether the algorithm reaches 

an optimal relative robust solution.  There are two main optimization models in this first 

stage.  Model (1) is used to calculate *Oω  for all scenariosω∈Ω⊆ Ω .  For any scenario 

ω∈Ω , if the model (1) is infeasible, the algorithm is terminated without robust.  Otherwise, 

once all required values of *  Oω ω∀ ∈Ω  are obtained, the relaxed model ( 2 ' ) is solved.  The 

relaxed model ( 2 ' ) is solved using the solver from CPLEX.  Due to the problem size, this step 

takes a lot of computational time.  In this paper, we improve this step by proposing the BD 

techniques to solve this problem as follows.  The relaxed model ( 2 ' ) has the structure: 
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This model can be rewritten as
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where the symbols in parenthesis next to the constraints denote to the corresponding dual 

variables.  The results from the following two lemmas are used to generate the master 

problem and sub problems of the BD for the relaxed model ( 2 ' ). 

Lemma 1:  ( )f xv  is a convex function on xv . 

Lemma 2:  
* *

*
' 1, ', ' ' 2, ', ' '

'

( ) ( )
( ')

TT T T
x xc

f x
O

ω ω ω ω ω

ω

π π⎛ ⎞+ +
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⎝ ⎠

T Sv v
v v v

v  where   

* *
 ' arg max{( ' ( ') ) / }Tc x Q x O Oω ω ω ω

ω
ω

∈Ω
∈ + −v v v , ( ')f x∂ v  is sub-differential of the function f at 'xv  

and ( *
1, ', 'xωπ v
v , *

2, ', 'xωπ v
v ) is the optimal solution of the dual problem in the calculation of ( )Q xω

v  

when 'ω ω=  and 'x x=v v .  Based on the results of the Lemma 1 and 2, we summarize the BD 

algorithm as it applies to the relaxed model ( 2 ' ). 

 

Benders’ Decomposition Algorithm for the Relaxed Model ( 2 ' ): 

Step 0:  Set lower and upper bounds lb = −∞  and ub = +∞  respectively.  Set the iteration 

counter k = 0.  Let 0Y  includes all cuts generated from all previous iterations of the improved 

three-stage algorithm.  All these cuts are valid because the improved algorithm always add 

more scenarios to the set Ω  and this causes the feasible region of the relaxed model ( 2 ' ) to 

shrink from one iteration to the next.  Let *xv  denote the incumbent solution.  The algorithm 

proceeds to Step 1. 
 

Step 1:  Solve the master problem below. If the master problem is infeasible, stop and 

report that the relaxed model ( 2 ' ) is infeasible. 
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Otherwise, update k ←  k + 1 and let ( )x kv be an optimal solution of the master problem 

and the algorithm proceeds to Step 2. 
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Q x k q y y h x k

y g x k
ω

ω ω ω ω ω ω ω ω

ω ω ω ω ω

π

π
≥

= ≥ +

= +

uv vv

v

vv v v v v v

v v v v

W T

V S
 

where the symbols in parenthesis next to the constraints denote to the corresponding dual 

variables.  If the sub problem is infeasible for any scenario ω∈Ω , go to Step 5.  Otherwise, 

using the sub problem objective values, compute the objective function value 

( )* *
( ) ( ) ( ) ( )( ( )) ( ) ( ( )) /T
k k k kf x k c x k Q x k O Oω ω ω ω= + −v v v v  corresponding to the current feasible 

solution ( )x kv  where * *
 ( ) arg max{( ( ) ( ( )) ) / }Tk c x k Q x k O Oω ω ω ω

ω
ω

∈Ω
∈ + −v v v .  If ub > ( ( ))f x kv , 

update the upper bound ( ( ))ub f x k= v  and the incumbent solution * ( )x x k=v v .  The algorithm 

proceeds to Step 3. 
 

Step 3:  If ub lb λ− ≤ , where 0λ ≥  is a pre-specified tolerance, stop and return *xv  as the 

optimal solution and ub  as the optimal objective value; otherwise proceed to Step 4. 
 

Step 4:  For the scenario * *
 ( ) arg max{( ( ) ( ( )) ) / }Tk c x k Q x k O Oω ω ω ω

ω
ω

∈Ω
∈ + −v v v , let 

( *
1, ( ), ( )k x kωπ v
v , *

2, ( ), ( )k x kωπ v
v ) be the optimal dual solutions for the sub problem corresponding to 

( )x kv  and ( )kω  solved in Step 2.  Compute the cut coefficients  

* *

*
( ) 1, ( ), ( ) ( ) 2, ( ), ( ) ( )( ) ( )

TT T T

k
k k x k k k x k kc

a
O

ω ω ω ω ω

ω

π π⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟
⎝ ⎠

T Sv v
v v v

v , and ( ) ( ( ))T
k kb a x k f x k= − +v v v , and 

go to Step 1. 
 

Step 5:  Let ω̂ ∈Ω  be a scenario such that the sub problem is infeasible.  Solve the 

following optimization problem where 0
v

 and 1
v

 represent the vector with all elements equal 

to zero and one respectively.  
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1 2
1 2 1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ,
m ax ( ( )) ( ( ))   s .t .     0

                                                                            0 1 ,   1 1

T T T T

v v
h x k v g x k v v v

v v

ω ω ω ω ω ω+ + + + ≤

≤ ≤ − ≤ ≤

v v

v vv v v v v v

v v v vv v

T S W V  

Let *
1vv  and *

2vv  be the optimal solution of this optimization problem.  Set k ←  k – 1 and 

* *
21ˆ ˆ ˆ ˆ{ | ( ) ( ) 0}k k T TY Y x h x v g x vω ω ω ω← ∩ + + + ≤T S

vv v v v v v  and go to Step 1. 
 

If the relaxed model ( 2 ' ) returns an infeasible solution, the algorithm is terminated 

without robust solution to the problem.  Otherwise, its results are the candidate robust 

decisions, *x xΩ =v v , and the lower bound on min-max relative regret value, 

* * * *max{( ( ) ) / }L Z x O Oω ω ωω∈Ω
Δ = −v  obtained from the relaxed model ( 2 ' ).  The optimality 

condition is satisfied when U L εΔ −Δ ≤ , where 0ε ≥  is pre-specified tolerance.  If the 

optimality condition is satisfied, the algorithm is stopped with the solution optxv  as theε -

optimal relative robust solution.  Otherwise the solution xΩ
v  and the value of LΔ  are 

forwarded to the second stage to find better solution.  For second and third stages, the solution 

procedures are the same as Assavapokee et al. (2009). 

3 Numerical Experiments 

In this section, we describe numerical experiments using the improved algorithm for 

solving a number of two-stage facility location problems under uncertainty.  The considered 

supply chain composes of suppliers, factories, warehouses and markets.  The decisions on the 

location, capacity allocation, and transportation are determined in order to minimize the 

overall supply chain cost.  The model requires the following notations, parameters and 

decision variables: 

 

m Number of markets c1hi Cost of shipping one unit from supplier h to factory i 

n Number of potential factory locations c2ie Cost of shipping one unit from factory i to warehouse e 

l Number of suppliers c3ej Cost of shipping one unit from warehouse e to market j 

t Number of potential warehouse locations pj Penalty cost per unit of unsatisfied demand at market j 

Dj Annual demand from customer j ze = 1 if warehouse is opened at site e;  0 otherwise 

Ki Potential capacity of factory site i x2ie Transportation quantity from plant i to warehouse e 

Sh Supply capacity at supplier h sj Quantity of unsatisfied Demand at market  j 

We Potential warehouse capacity at site e yi = 1 if plant is opened at site i; : = 0 otherwise 
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f1i Fixed cost of locating a plant at site i x1hi Transportation quantity from supplier h to plant i 

f2e Fixed cost of locating a warehouse at site e x3ej Transportation quantity from  warehouse e to market j 
 

We assume that there can be many warehouses and factories to satisfy every player the 

entire supply chain and one unit of input from a supply source corresponds to one unit of the 

finished product.  There are also the capacity limits for all factories and warehouses.  Also, 

there is a linear penalty cost for each unit of unsatisfied demands.  For the deterministic case, 

the overall problem can be modeled as the MILP problem presented in the following model.  

When some parameters in the model are uncertain, the goal becomes to identify robust factory 

and warehouse locations under relative robustness definition.  Transportation decisions are 

treated as recourse decisions which will be made after the realization of uncertainty. 

 

1 2 1 1 2 2 3 3
1 1 1 1 1 1 1 1 1

1 1 2
1 1 1

2
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∑ ∑

∑ ∑
,  {0,1}  ,  and {0,1}    i ej y i z e∀ ∈ ∀ ∈ ∀

 

 

We apply the improved algorithm to 25 different experimental settings of the robust 

facility location problems.  Each experimental setting in this case study contains different sets 

of uncertain parameters and different sets of possible locations which result in different 

number of possible scenarios.  The number of possible scenarios in this case study varies from 

64 up to 340 scenarios.  The key uncertain parameters in these problems are the supply 

quantity at the supplier, the potential capacity at the factory, the potential capacity at the 

warehouse, and the unit penalty cost for not meeting demand at the market.  Let us define 

notations l’, n’, t’, and m’ to represent the number of suppliers, factories, warehouses, and 

markets with uncertain parameters respectively in the problem.  It is assumed that each 

uncertain parameter in the model can independently take its values from r possible real 

values.  The following Table 1 describes these twenty five settings of the case study.  Table 2 
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summarizes information on approximated parameters’ values associated with case 25.  A 

variable transportation cost of $0.01 per unit per mile is assumed in this case.  The distance 

between each pair of locations is calculated based on the latitude and longitude information.  

It is assumed that each uncertain parameter in this case can take its values from 80%, 100%, 

and 120% of its approximated value reported in Table 2.  These data are the same as the data 

of the large problem solved by Assavapokee et al. (2009). 

 

Table 1: Twenty Five Settings of Numerical Problems in the Case Study. 

 
Problem 

 
l 

 
n 

 
t 

 
m 

 
l’ 

 
n’ 

 
T’ 

 
m’ 

 
r 

 
|Ω | 

Size of Extensive Form Model 
#Constraints #Continuous 

Variables 
#Binary 

Variables 
1 8 8 8 8 0 2 2 2 2 64 3.14 x 103 1.13 x 104 16 
2 8 8 8 8 0 2 2 4 2 256 1.25 x 104 4.51 x 104 16 
3 8 8 8 8 0 2 4 2 2 256 1.25 x 104 4.51 x 104 16 
4 8 8 8 8 0 2 6 2 2 1024 5.02 x 104 1.80 x 105 16 
5 8 8 8 8 0 2 2 6 2 1024 5.02 x 104 1.80 x 105 16 
6 8 8 8 8 0 2 4 4 2 1024 5.02 x 104 1.80 x 105 16 
7 8 8 8 8 0 2 4 6 2 4096 2.01 x 105 7.21 x 105 16 
8 8 8 8 8 0 2 6 4 2 4096 2.01 x 105 7.21 x 105 16 
9 8 8 8 8 0 2 6 6 2 214 8.03 x 105 2.88 x 106 16 

10 8 8 8 8 0 6 6 6 2 218 1.28 x 107 4.61 x 107 16 
11 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
12 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
13 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
14 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
15 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
16 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
17 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
18 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
19 6 6 6 6 6 6 6 6 3 324 1.04 x 1013 2.71 x 1013 12 
20 8 8 8 8 8 8 8 8 3 332 9.08 x 1016 3.26 x 1017 16 
21 8 8 8 8 8 8 8 8 3 332 9.08 x 1016 3.26 x 1017 16 
22 8 8 8 8 8 8 8 8 3 332 9.08 x 1016 3.26 x 1017 16 
23 8 8 8 8 8 8 8 8 3 332 9.08 x 1016 3.26 x 1017 16 
24 8 8 8 8 8 8 8 8 3 332 9.08 x 1016 3.26 x 1017 16 
25 10 10 10 10 10 10 10 10 3 340 7.42 x 1020 3.40 x 1021 20 
 

Table 2: Approximated Parameters’ Information of the Case 25. 
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Table 3: Performance Comparison between Proposed Algorithm and Traditional Methods. 

 
Problem  

Solution Time (sec.) Proposed Algorithm 
Initial Scenarios Setup 1 Initial Scenarios Setup 2 

EFM 
 

BEFM 
 

SR 
 

Stage1 
Time 
(sec.) 

Stage3 
Time 
(sec.) 

Total 
Time 
(sec.) 

#Iteration 
( |Ω | ) 

Stage1 
Time 
(sec.) 

Stage3 
Time 
(sec.) 

Total 
Time 
(sec.) 

#Iteration 
( |Ω | ) 

1 460 154.26 35 18.64 6.65 25.3 4 (5) 6.15 2.14 8.3 1 (9) 
2 6378 1025.64 83 26.53 5.96 32.5 4 (5) 6.98 2.51 9.5 1 (9) 
3 10790 1242.53 104 29.82 8.87 38.7 6 (7) 6.40 2.29 8.7 1 (9) 
4 55481 3652.87 511 38.61 8.58 47.2 8 (9) 7.25 2.84 10.1 1 (9) 
5 65269 4058.65 379 28.30 6.49 34.8 4 (5) 9.93 2.66 12.6 2 (10) 
6 62832 4123.36 450 31.74 10.65 42.4 6 (7) 12.02 3.17 15.2 3 (11) 
7 -- 15254 1827 45.74 8.55 54.3 9 (10) 9.02 2.77 11.8 2 (10) 
8 -- 17329 2123 45.96 10.24 56.2 9 (10) 14.63 2.56 17.2 3 (11) 
9 -- 79602 8895 40.38 9.01 49.4 8 (9) 17.01 2.59 19.6 3 (11) 

10 -- -- 184868 98.52 14.48 113 15 (16) 42.33 9.76 52.1 5 (13) 
11 -- -- -- 78.80 50.43 129.23 13 (14) 19.46 6.42 25.88 2 (18) 
12 -- -- -- 106.52 35.62 142.14 16 (17) 138.83 32.99 171.82 13 (29) 
13 -- -- -- 64.76 47.84 112.60 13 (14) 102.1 40.04 142.14 11 (27) 
14 -- -- -- 48.30 43.09 91.39 9 (10) 62.37 21.32 83.69 7 (23) 
15 -- -- -- 72.24 41.98 114.22 14 (15) 32.7 14.19 46.89 3 (19) 
16 -- -- -- 246.84 128.04 374.88 28 (29) 150.52 63.01 213.53 14 (30) 
17 -- -- -- 129.56 17853 17982 18 (19) 118.88 10546 10665 13 (29) 
18 -- -- -- 82.27 41.10 123.37 14 (15) 66.31 6.26 72.57 3 (19) 
19 -- -- -- 168.50 6908.16 7076.66 20 (21) 79.21 12263 12342 7 (23) 
20 -- -- -- 459.74 1289.83 1749.57 23 (24) 219.13 766.63 985.76 8 (24) 
21 -- -- -- 1097.64 67162 68260 39 (40) 634.44 66510 67144 20 (36) 
22 -- -- -- 540.77 20151 20692 26 (27) 315.15 17874 18189 16 (32) 
23 -- -- -- 1450.48 420.33 1870.22 48 (49) 538.36 511.07 1049.43 16 (32) 
24 -- -- -- 1419.59 36800 38219 41 (42) 527.08 40180 40707 18 (34) 
25 -- -- -- 3032.8 120231 123264 84 (85) 1882.54 80709 82592 57 (73) 

 

 

All case study settings are solved by the improved algorithm with ε  = 0, the scenario 

relaxation algorithm (SR) with one initial scenario, extensive form model (EFM), and 

Benders’ Decomposition (BEFM) on a Windows XP-based Pentium(R) 4 CPU 3.60GHz 

personal computer with 2.00 GB RAM using a C++ program and CPLEX Concert 

Technology API for the optimization process.  MS-Access is used for input and output 

database.  In this case study, we apply the improved algorithm to these 25 experimental 

problems by using two different setups of initial scenarios.  For the first setup, the initial 

scenario set consists of only one scenario where all parameters are set at their approximated 

value.  For example, the initial scenario for the case 25 is the scenario where all parameters 

take their values from associated values reported in the Table 2.  For the second setup, the 



126 Wuthichai Wongthatsanekorn and Tiravat Assavapokee 

 

 

initial scenario set consists of all possible combinations of upper and lower bounds for each 

main type of uncertain parameters.  For example, there are four main types of uncertain 

parameters (supply quantity, factory capacity, warehouse capacity, and penalty cost) in the 

case 25.  In this case, the initial scenario set of the problem will consist of 24 = 16 scenarios 

for the second setup.  Table 3 illustrates the computation time (in seconds) and performance 

comparison among these methodologies over all 25 settings.  If the algorithm fails to obtain 

an optimal robust solution within 52 hours or fails to solve the problem due to insufficiency of 

memory, the computation time of “--“ is reported in the table.  Because the problems 

considered in this case study are always feasible for any setting of location decisions, the 

Stage2 of the improved algorithm can be omitted.   

 

All results from these experimental runs illustrate significant improvements in 

computation time of the improved algorithm over the scenario relaxation algorithm and the 

extensive form model both with and without BD.  These results demonstrate the promising 

capability of the improved algorithm for solving practical relative robust optimization 

problems under full factorial scenario design of data uncertainty with extremely large number 

of possible scenarios.  In addition, these numerical results illustrate the impact of the quality 

of the initial scenarios setup on the required computation time of the improved algorithm.  

Decision makers are highly recommended to perform thorough analysis of the problem in 

order to construct the good initial set of scenarios before applying the improved algorithm.  

For case 25 which has 340 possible scenarios, the algorithm proposed by Assavapokee et al. 

(2009) takes 57 iterations or 58 hours 27 minutes and 34 seconds to complete.  Our improved 

algorithm with second setup also takes the same number of iterations but finishes in 22 hours 

56 minutes and 32 seconds only.  The computational time is reduced by about 61 percent. 

This result shows that our improved algorithm is more efficient to solve this type of problem. 

4 Conclusion 

This paper proposes an improved relative robust optimization algorithm that can account 

for the uncertainty in model parameter values of MILP problems when each uncertain 

parameter in the model can independently take its value from a finite set of real numbers with 

unknown joint probability distribution.  This type of parametric uncertainty is referred to as a 

full-factorial scenario design.  The algorithm consists of three stages to solve the overall 

optimization problem efficiently.  Using the pre-processing steps, decomposition techniques, 
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and problem transformation procedures, the improved algorithm has shown computational 

improvement.  The main contribution of this paper is the addition of BD algorithm in stage 

one which replaces the default algorithm from CPLEX as done by Assavapokee et al. (2009).  

This algorithm help improve the computation time so that the larger problem can be solved 

quicker. We also show that the algorithm will either terminate at an optimal relative robust 

solution or identify the infeasibility in a finite number of iterations.  To verify the 

improvement of BD algorithm, twenty five case studies of robust facility location problems 

under uncertainty are solved using the improved algorithm.  These case studies are originated 

by Assavapokee et al. (2009).   All results illustrate better performance of the improved 

algorithm for solving the relative robust optimization problems of this type over the 

traditional methodologies.  When the solution computation effort is compared with algorithm 

of Assavapokee et al. (2009) without BD algorithm, the improved algorithm can reduced the 

computational time by 61 percents for the problem with 340 possible scenarios.  This 

improvement enables the researcher to solve a large problem faster. 
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