
*Corresponding author (HumeraTariq). Tel: +92-3012387949 E-mail: humera@uok.edu.pk ©2018 International
Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. Volume 9 No.6 ISSN
2228-9860 eISSN 1906-9642 http://TUENGR.COM/V09/589.pdf https://doi.org/10.14456/ITJEMAST.2018.54

589

International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies

http://TuEngr.com

CYRUS BECK RAY TRACING AND
DYNAMIC COLLISION DETECTION

Humera Tariq a*

a Department of Computer Science, University of Karachi, PAKISTAN.

A R T I C L E I N F O

A B S T R A C T

Article history:
Received 19 February 2018
Received in revised form 14
September 2018
Accepted 23 November 2018
Available online
29 November 2018
Keywords:
Cyrus beck clipping
algorithm; OpenGL; Dry
Run; 2D Collision
detection; Ray tracing.

The objective of this paper is to study collision detection and ray
tracing in two dimensional (2D) world space. A minimal ray tracing
pipeline for dynamic collision detection has been designed, practiced and
simulated in C++ and OpenGL. The main contribution of paper is
modification of state of the art Cyrus beck clipping algorithm to address
collision detection problem. Scene to be displayed has been stored in a
simple text file for loading while Animation in 2D world with has been
modeled through Markov Chain. Modified pseudocode has been
presented along with Dry Run of Cyrus Beck for reader’s convenience.
Simulation results of 2D ray tracing has been presented by setting up a
2D scene for collision between Polygonal entities. Results shows that
Cyrus Beck successfully determine where a ray or polygon with intersect
each other and hit time can be successfully estimated with complexity.

© 2018 INT TRANS J ENG MANAG SCI TECH.

1. INTRODUCTION
Collision Detection in 2D is a fascinating alternative term for mathematical formulation of

various Intersection Problems including but not limited to Line-Line Intersection, Ray-Line
Intersection, Ray-Polygon (Polyhedron) Intersection and Polygon (Polyhedron)-Polygon
(Polyhedron) Intersection (More, 2011). Two most important applications in this context are Path
(Ray) Tracing and Image Synthesis (Shirley, 2016). The terms Ray tracing and image synthesis are
usually employed for raster image creation which is a terminal process of Graphics Pipeline. The
performance in this case is measured by dividing the number of primitives (usually triangle) actually
intersected by each ray to the total number of triangles exist in scene to be rendered. In contrast to
pixel base ray tracing, collision detection is a geometrical term and is meant for vertex based object-
object intersection at user’s front-end screen in games, movies and simulations. The simplest
example to demonstrate both Ray Tracing and Collision Detection is practicing Reflection in
Chamber Case study in (Hill, 2007). The case study opens thought process for a variety of concepts
like Spatial Partitioning, Spatial Sorting, bounding volumes, overlapping, clipping, mirror reflections
and brute force collision detection tests (Lai et al., 2017; Nah et al., 2015; Li and Mukundan, 2013;
Kockara, et al., 2007; Wald et al., 2006).

©2018 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.

590 HumeraTariq

A high level Ray Tracing Pipeline for collision detection comprised of: (1) Scene Loading (2)
Object Rendering (3) State Transition (4) Frame Animation (5) Screen Display. The scene loading
module takes a text file as input and load the geometrical information of its component objects into
appropriate data structure. As a Computer Graphics buff, I always suggest and prefer to employ C++
Standard Template Library to hold description of scene object for e.g. a multiline file containing: {
SPIDER_MAN, 200,200} means that an object “ SPIDER_MAN” will appear at pixel location
(𝑥𝑥,𝑦𝑦) = (200, 200) on the output screen as shown in Figure 1. The more appropriate and standard
way is to use Scene Description language (SDL) or standard OBJ format for reading scene
information. (Cahoon et al., 2018; Jo et al., 2018). The scene description in text format shifts
programming overhead from Developer to Designer and thus facilitates modular system design
approach. Traditional Rendering Modules did two jobs sequentially: (1) Iterate over all scene objects
to pixelate and write them into GPU buffer (2) If input scene contains any animated object, it will
update its state for e.g position as well. Due to recent and upcoming GPU advancement, these two
step has been turn into threads for performance achievement (Bhat and Asberg, 2018). Thus state
transition can be separated as a separate module. A Markov chain model to simulate an animated
model has been illustrated in Figure 2.

Figure 1: Reading of Simple Scene from Text file into Standard C++ Container.

Figure 2: State Transition and Update Mechanism for Moving Entities.

Figure 2 shows that the set of four possible states for an animated character can be expressed as
Set 𝑆𝑆 where 𝑆𝑆 = {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 𝐽𝐽𝑅𝑅𝐽𝐽𝐽𝐽𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑆𝑆𝑆𝑆𝐷𝐷}. A state can be further sub-divided for

*Corresponding author (HumeraTariq). Tel: +92-3012387949 E-mail: humera@uok.edu.pk ©2018 International
Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. Volume 9 No.6 ISSN
2228-9860 eISSN 1906-9642 http://TUENGR.COM/V09/589.pdf https://doi.org/10.14456/ITJEMAST.2018.54

591

flexibility for e.g. 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = { 𝑅𝑅𝑅𝑅𝑆𝑆1,𝑅𝑅𝑅𝑅𝑆𝑆2,𝑅𝑅𝑅𝑅𝑆𝑆3 }. At each time step, a character in
STANDING state have a 10% chance of staying in that state , have an 85% chance of moving to
RUNNING state , and a 5% chance of dying. The same character, when reaches to RUNNING State
have a 60% chance of continuing running, 30% chance to move to JUMP state and 1% chance of
dying while he is running. The JUMP state continues with 25% chance and it is most dangerous state
as the chance of dying in this state will increase to 75%. While Designing animations through Markov
model, it is important to note that probabilities out of any state must sum to 1.0. Once the state of the
models has been checked and updated, it’s time to render new frame so that moving objects will be
displayed at new pixels’ locations on the old screen. A smart trick to do that is to move the world
space (frame) back instead of moving all objects forward. This saves time as only selected and
specific animated scene objects needs state transition is called frame animation. This concept of
changing world/frame origin (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑌𝑌) to(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋 ± 𝑜𝑜𝑜𝑜𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜 𝑣𝑣𝑓𝑓𝑣𝑣𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑦𝑦, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑌𝑌 +
𝑜𝑜𝑜𝑜𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜 𝑣𝑣𝑓𝑓𝑣𝑣𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑦𝑦) instead of changing character position is illustrated in Figure 3. Computer
Graphics Readers knows that addition of point and vector yield new position in 2D space i.e. 𝑄𝑄 =
𝐽𝐽 + �⃗�𝑣 . Finally, all the polygonal primitives have been sent to display device screen through low
level graphics API for e.g. OpenGL or Vulkan. (Shreiner, 2009; Viggers et al., 2017).

Figure 3: Smart and Popular Frame Animation Trick

2. RAY TRACING SET UP
Cyrus Beck provides solution to the fundamental clipping problem (Skala, 2012). As

intersection determination is implicit to clipping, the clipping problem handle collision detection
problem as well. Every object in scene exist with a rectangular bounding box around it whose four
sides will be treated as a list of rays. Table 1, consider a simple scenario with two moving objects
namely Obj1 (Blue Box) and Obj2 (Green Box) as shown in Figure 4. The set of rays for both are
r_Obj1 and r_Obj2 respectively and they can be calculated using end points of edges form Equation
(1) while normal vectors along edges can be computed by simple swap with correct orientation from
Equation (2). Consider one moving object as a set of rays for e.g. Obj1 with its left bottom (left,
bottom) as control point in our case while treat Obj2 as a complete polygon or Line List. Once rays

592 HumeraTariq

along edges has been computed, its intersection with Green Polygon can be estimated as shown in
the form of Red Triangle in Figure 4.

 𝑓𝑓[𝑣𝑣] = �𝑓𝑓𝑥𝑥𝑖𝑖 , 𝑓𝑓𝑦𝑦𝑖𝑖� = 𝐷𝐷𝐸𝐸𝐸𝐸𝑓𝑓𝑆𝑆𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝐽𝐽𝑜𝑜𝑣𝑣𝐸𝐸𝑜𝑜 − 𝐷𝐷𝐸𝐸𝐸𝐸𝑓𝑓𝐷𝐷𝐸𝐸𝐸𝐸𝐽𝐽𝑜𝑜𝑣𝑣𝐸𝐸𝑜𝑜 0 ≤ 𝑣𝑣 < 3 (1)

 𝐸𝐸[𝑣𝑣] = �𝑓𝑓𝑦𝑦𝑖𝑖,−𝑓𝑓𝑥𝑥𝑖𝑖� 0 ≤ 𝑣𝑣 < 3 (2)

Figure 4: Rays and Polygon Setup for Cyrus beck Algorithm Collision Detection.

Table 1: Cyrus Beck algorithm for Collision detection and Ray tracing.
Create Bounding Box for every Scene Object

hit := false; tIn =0.0; tOut = 1.0;

Obj1 _ r: = ray_list; {Pointer to rays to map bounding box on r[0], r[1],r[2],r[3] }

Obj2 _ r: = ray_list; {Pointer to rays to map bounding box on r[0], r[1],r[2],r[3] }

Vector c := r_Obj1

for (i:=0; i< r.size(); i++)

 Vector n := r_Obj2[i].norm();

 Vector temp = r_Obj2[i].base()- r_Obj1[i].base();

 Numerator = n.dot(temp); Denominator = n.dot(obj2 Edge Vector)

if(denom < 0) // ray is entering

 { float tHit = numer / denom; if(tHit > tOut) return false;

 else if(tHit > tIn) tIn = tHit;

 }

else if(denom > 0) // ray is exiting

 {

 float tHit = numer / denom; if(tHit < tIn) return false;

 else if(tHit < tOut) tOut = tHit;

 }

else if(numer <= 0) return false; // Denominator is zero and ray is parallel

 }

if(tOut <= 1.0f || tIn >= 0.0f)

 { return true;}

*Corresponding author (HumeraTariq). Tel: +92-3012387949 E-mail: humera@uok.edu.pk ©2018 International
Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. Volume 9 No.6 ISSN
2228-9860 eISSN 1906-9642 http://TUENGR.COM/V09/589.pdf https://doi.org/10.14456/ITJEMAST.2018.54

593

3. RAY TRACING ALGORITHM
Once rays and polygon has been created and set as described in Section 2. Cyrus Beck can

determine all the possible hits for a particular ray say 𝑓𝑓[0] of Obj 1 against the line list of Obj2. It
calculates hit time using Equation 3.

 𝑜𝑜ℎ𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑡𝑡𝑛𝑛
𝐷𝐷𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑡𝑡𝑛𝑛

= 𝑛𝑛�⃗ .𝑖𝑖𝑛𝑛𝑡𝑡���������⃗

𝑛𝑛�⃗ .𝑐𝑐
= 𝑛𝑛�⃗ .(𝑂𝑂𝑂𝑂𝑂𝑂21𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠−𝑂𝑂𝑂𝑂𝑂𝑂11𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠)

𝑛𝑛�⃗ .(𝑅𝑅𝑛𝑛𝑦𝑦𝑒𝑒𝑃𝑃𝑒𝑒−𝑅𝑅𝑛𝑛𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
 (3)

4. SIMULATION RESULTS
Simulation Result can be divided into two cases: (1) Intersection of Ray against Polygon (2)

Polygon vs. Polygon Intersection.

4.1 INTERSECTION OF RAY AGAINST POLYGON
Result of Case I, Intersection of Ray against Polygon, is shown in Tables 2 and 3.

Table 2: Polygon and Ray Setup in Case I

Table 3: Candidate Interval for Intersection in Case I

594 HumeraTariq

4.2 POLYGON VS. POLYGON INTERSECTION
Result of Case II, Polygon vs. Polygon Intersection, has been shown in Tables 4 and 5.

Table 4: Ray and Polygon Setup for Case II.

Table 5: Hit results based on Cyrus beck intersection Algorithm for case II.

5. CONCLUSION
The Paper review and discuss Cyrus Beck intersection algorithm along with its usage scenario.

Two cases have been designed and simulated for results. Results shows that Cyrus Beck successfully
determine where a ray or polygon with intersect each other and hit time can be successfully estimated
with complexity 𝑂𝑂(𝐸𝐸2) and hence it is important to further improve this work for both efficiency
and rendering perspective.

6. REFERENCES
Hill., F. S., (2007). Computer Graphics Using Open Gl. Upper Saddle River NJ: Prentice Hall.

Kockara, S. et. al. (2007). Collision Detection: A Survey. A survey, in: IEEE International
Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, 2007, pp. 4046-4051.

*Corresponding author (HumeraTariq). Tel: +92-3012387949 E-mail: humera@uok.edu.pk ©2018 International
Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. Volume 9 No.6 ISSN
2228-9860 eISSN 1906-9642 http://TUENGR.COM/V09/589.pdf https://doi.org/10.14456/ITJEMAST.2018.54

595

Lai, W.H, Tang, C.Y. and Chang, C.F. (2017). Ray Tracing API Integration for OpenGL
Applications. WSCG 2017: poster papers proceedings: 25th International Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation
with EUROGRAPHICS Association, pp. 1-5.

Mora, B. (2011). Naive Ray-Tracing: A Divide-And-Conquer Approach. ACM Transactions on
Graphics, 30(5), 117:1-117:12.

Nah, J. et. al (2015) HART: A Hybrid Architecture for Ray Tracing Animated Scenes. IEEE
Transactions on Visualization and Computer Graphics, 21(3), pp 1-15.

Shreiner, D. (2009). OPENGL PROGRAMMING GUIDE, 7th ed., Addison-Wesley Professional.

Viggers, S., Malnar,T., Ramkissoon, S.R. (2017). Systems and methods for using an opengl api with
a vulkan graphics driver. US010102605B1.

Skala , V. (2012). S-Clip E2 : A New Concept of Clipping Algorithms. SIGGRAPH Singapore, ASIA.

Cahoon, R.M, Linscott, G., Treuille, G. (2018) US Patent App.15/405,649, Patents.

Jo, S., Jeong, Y. & Lee, S. J (2018). GPU-Driven Scalable Parser for OBJ Models. Comput. Sci.
Technol., 33: 417. https://doi.org/10.1007/s11390-018-1827-2

Shirley, P. (2016). Ray Tracing in One Weekend.

Wald, I., Boulos, S. and Shirley, P. (2006). Ray Tracing Deformable Scenes using Dynamic Bounding
Volume Hierarchies. ACM Transactions on Graphics.

Tony, L.A, Gose, D. Chakravarthy, A. (2017). Avoidance maps: A new concept in UAV collision
avoidance. International Conference on Unmanned Aircraft Systems (ICUAS)

Bhat, N., Asberg, F. (2018). Performance of Priority-Based Game Object Scheduling. Degree Project
In Technology, First Cycle, 15 Credits Stockholm, Sweden.

Dr. Humera Tariq is an Assistant Professor at Department of Computer Science, University of Karachi
(UoK), Pakistan. She holds MS/PhD in Computer Science and B.E in Electrical Engineering from UoK
and NED University of Engineering and Technology, respectively. She possesses extensive experience
in Public Sector Teaching and interested in reforms development in higher education sector. Her
research interest includes image processing, biomedical imaging, computer graphics, deep learning and
simulation.

	1. INTRODUCTION
	2. RAY TRACING SET UP
	3. RAY TRACING ALGORITHM
	4. SIMULATION RESULTS
	4.1 INTERSECTION OF RAY AGAINST POLYGON
	4.2 POLYGON VS. POLYGON INTERSECTION

	5. CONCLUSION
	6. REFERENCES

