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In this paper, the Adomian decomposition method (ADM) is used to 

solve the fractional differential equations under Caputo derivative.  This 

study reviews basic definitions of fuzzy set and fractional calculus. This 

work studies and discusses Adomian decomposition method under Fuzzy 

fractional Caputo derivative.  Since the ADM approximates the exact 

solution as an infinite series, then the convergence theorem is considered 

with successive iterations.  For illustration, an example is given to 

compare between exact and approximate solutions.  The uniformly 

convergence of sequence {𝑦𝑖(𝑡)} with various types of differentiability to 

the exact solution is proved. 
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 INTRODUCTION 1.
Fractional calculus is a benefit branch in mathematics, chemistry, optics, control theory, 

engineering and etc that have studied in recent years. Fractional calculus was slowly prepared at first, but 

it has been a powerful implement in various applications. Fuzzy fractional differential equations is 

casted by Agarwal et al. (2010). They have drafted the Riemann-Liouville differentiability concept 

under the Hukuhara differentiability to solve fuzzy fractional differential equations. In Arshad & 

Lupulescu (2011) and Allahviranloo (2005), the existence and uniqueness are proved for solutions of 

fuzzy fractional differential equations under Riemann-Liouville differentiability. Allahviranloo et al. 

(2014) proved the existence and uniqueness results for fuzzy fractional integral and Integra-differential 

equations involving Riemann-Liouville differential operators. The famous used method in solving 

fractional differential equations is the Caputo fractional derivative. Based on generalized Hukuhara 

derivative (2001), the opinion of fractional Caputo derivative is introduced in Armand & Gouyandeh 

(2013), afterwards fuzzy fractional differential equations are investigated under this kind of 
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differentiability. Allahviranloo et al. in 2009 proved the existence and uniqueness solution of fuzzy 

fractional differential equations (FFDEs) under Caputo’s gH-differentiability.  

In the present paper, we attempt an analytical method to solve FFDEs. To this end, we adopted the 

Adomian decomposition method (ADM) to solve FFDEs. The Adomian decomposition method (ADM) 

can be used to solve various mathematical models or system of equations involving algebraic equations, 

differential equations, Integra-differential equations and linear or non-linear equations (Adomian 1988; 

Adomian, 1994; Abbaoui & Cherruault, 1994; Wazwaz, 2001; Wazwaz, 2005). In Wazwaz (2001) 

ADM has employed for solving non-linear fractional differential equations. Specifically, in 

Daftardar-Gejji & Jafari (2005) and Jafari & Daftardar-Gejji (2006) ADM has used for solving systems 

of fractional differential equations (linear and nonlinear). Convergence of Adomians method has been 

studied in (Abdelrazec & Pelinovsky, 2011; Abbaoui & Cherruault, 1994; Ghanbari & Nuraei, 2014; 

Hosseini & Nasabzadeh, 2006). 

 PRELIMINARIES 2.

In this section we present some definitions and useful concepts of fractional calculus and fuzzy set. 

Let us consider ℜ𝐹 be a set of all fuzzy numbers on ℜ. 

Definition 2.1. A fuzzy number is a map 𝑢: ℜ → [0,1] which satisfies (Zimmermann, 1991) 

i. u is upper semi-continuous. 

ii. u is fuzzy convex, i.e., 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝑚𝑖𝑛{𝑢(𝑥), 𝑢(𝑦)}for all 𝑥, 𝑦 ∈ ℜ, 𝜆 ∈

[0,1]. 

iii. u is normal, i.e., ∃𝑥0 ∈ ℜ; 𝑢(𝑥0) = 1. 

iv. 𝑠𝑢𝑝𝑝 𝑢 = {𝑥 ℜ|𝑢(𝑥) > 0} is the support of the 𝑢 , and its closer (𝑠𝑢𝑝𝑝 𝑢) is 

compact. 

The metric structure is given by the Hausdorff distance. 

𝐷: ℜ𝐹 × ℜ𝐹 → ℜ+⋃{0}, 

𝐷(𝑢, 𝑣) = 𝑠𝑢𝑝𝛼∈[0,1]𝑚𝑎𝑥{|𝑢(𝛼) − 𝑣(𝛼)|, |𝑢(𝛼) − 𝑣(𝛼)|}. 

 

(ℜ𝐹, 𝐷) is a complete metric space and the following properties are well known: (Ghanbari & 

Nuraei, 2014). 

i. 𝐷(𝑢⨁𝑤,   𝑣⨁𝑤) = 𝐷(𝑢, 𝑣) ∀ 𝑢, 𝑣, 𝑤 ∈ ℜ𝐹  

ii. 𝐷(𝑢⨁𝑤,   0̃) = 𝐷(𝑢, 0̃) + 𝐷 (𝑣, 0̃ )  ∀𝑢, 𝑣 ∈ ℜ𝐹  

iii. 𝐷(𝑢⨁𝑤,   𝑤⨁𝑧) ≤ 𝐷(𝑢, 𝑤) +  𝐷(𝑣, 𝑧)  ∀ 𝑢, 𝑣, 𝑤, 𝑧 ∈ ℜ𝐹  

iv. 𝐷(𝜆. 𝑢 , 𝜆. 𝑣) = |𝜆|𝐷(𝑢, 𝑣) ∀ 𝑢, 𝑣 ∈ ℜ𝐹    𝜆 ∈ ℜ𝐹  

Definition 2.2. The generalized Hukuhara difference of two fuzzy numbers  

(gH-difference for short) is defined as follows (Bede & Stefanini, 2013): 

𝑢 ⊖𝑔𝐻
𝑣=𝑤 ⇔{

(𝑖)            𝑢=𝑣⊕𝑊,
(𝑖𝑖)     𝑣=𝑢⨁(−1)𝑤.  

  

Definition 2.3. The generalized Hukuhara derivative of a fuzzy-valued function 𝑓: (𝑎, 𝑏) → ℜ𝐹  at 

𝑥0 is defined as (Stefanini & Bede, 2009) 

Fvu ,
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Also, we say that 

i. f  is [(𝑖) − 𝑔𝐻] differentiable at 𝑥0 if 

(𝑓)𝑔𝐻
′ (𝑥0; 𝛼) = [𝑓−

′ (𝑥0, 𝛼),   𝑓+
′  (𝑥0, 𝛼)],   0 ≤ 𝛼 ≤ 1. 

ii. f  is [(𝑖𝑖) − 𝑔𝐻] differentiable at 𝑥0 if 

o (𝑓)𝑔𝐻
′ (𝑥0; 𝛼) = [𝑓∓

′  (𝑥0, 𝛼),   𝑓−
′  (𝑥0, 𝛼)],   0 ≤ 𝛼 ≤ 1. 

Definition2.4. Let 𝑃𝑘(ℜ𝐹)  denote the family of all nonempty, compact and convex 

subsets of and define the addition and scalar multiplication in 𝑃𝑘 (ℜ𝑛)  is usual (Armand 

& Gouyandeh, 2013). A mapping 𝑓: 𝐼 → ℜ𝑛 is strongly measurable, if for all 𝛼 ∈ [0,1] the 

set-valued mapping 𝑓𝑛: 𝐼 → 𝑃𝑘(ℜ𝑛) defined by 

𝑓𝛼(𝑡) → [𝑓(𝛼)]𝑡 

Is Lebesgue measurable, when 𝑃𝑘 (ℜ𝑛) is endowed with the topology generated by the Hausdorff 

metric D. 

Definition 2.5. A mapping  𝑓: 𝐼 → ℜ𝑛   is called integrably bounded if there exists an 

integrable function h such that ‖𝑥‖ ≤ ℎ(𝑡) for all 𝑥 ∈ 𝑓0(𝑡) (Armand & Gouyandeh, 2013). 

Definition 2.6. A strongly measurable and integrably bounded mapping 𝑓: 𝐼 → ℜ𝑛 is said 

to be integrable over I if  ∫ 𝑓(𝑡)𝑑𝑡 ∈ ℜ𝐹𝑡
 (Armand & Gouyandeh, 2013). 

Definition 2.7. Let 𝑓: [𝑎, 𝑏] → ℜ𝑛 . The fuzzy fractional Riemann-Liouville integral of 

fuzzy-valued function f is defined as follows (Abasbandy et al., 2012) 

(𝐽𝑎
𝑣𝑓)(𝑥) =

1

Γ(𝑣)
∫ (𝑥 − 𝑡)𝑣−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡, 

for 0 ≤ 𝑉 ≤ 1. For V=1, we set 𝐼𝑎
𝑙 = 𝐼, the identity operator. 

Let us denote 𝐶𝐹[𝑎, 𝑏] as the space of all continuous fuzzy-valued functions on[𝑎, 𝑏]. 

Also, we denote the space of all integrable fuzzy-valued functions on interval [𝑎, 𝑏]  by 

𝐿𝐹[𝑎, 𝑏]Let 𝑓𝑔𝐻
(𝑛)

∈ 𝐶𝐹[𝑎, 𝑏] ∩ 𝐿𝐹[𝑎, 𝑏], thus the fuzzy gH -fractional Caputo differentiable of 

fuzzy-valued function 𝑓(𝐶𝐹 [𝑔𝐻]-differentiable for short) is defined as following.  

Definition 2.8. Consider 𝑓: [𝑎, 𝑏] → ℜ𝑛 . Fractional derivative of under generalized 

Hukuhara differentiability in the Caputo sense is defined as (Abasbandy et al., 2012)  

(gH𝐷∗
𝑣𝑓)(𝑥) =

1

Γ(𝑛−𝑣)
∫ (𝑥 − 𝑡)𝑛−𝑣−1𝑓𝑔𝐻

(𝑛)(𝑡)𝑑𝑡,         𝑛 − 𝑖 < 𝑣 ≤ 𝑛,    𝑛 ∈ 𝑁, 𝑥 > 𝑎
𝑥

𝑎
 

Also we say that f is 
CF

[(𝑖) − 𝑔𝐻]-differentiable at  if 

(gH𝐷∗
𝑣𝑓)(𝑥0; 𝛼) = [(𝐷∗

𝑣𝑓−)(𝑥0; 𝛼), (𝐷∗
𝑣𝑓+)(𝑥0; 𝛼)]    0 ≤ 𝛼 ≤ 1     (1) 

And so f is 
CF

[(𝑖𝑖) − 𝑔𝐻]-differentiable at 𝑥0 if 

(gH𝐷∗
𝑣𝑓)(𝑥0; 𝛼) = [(𝐷∗

𝑣𝑓+)(𝑥0; 𝛼), (𝐷∗
𝑣𝑓−)(𝑥0; 𝛼)]    0 ≤ 𝛼 ≤ 1     (2) 

In this paper, we only consider 
CF

[𝑔𝐻]-differentiable of order 0 ≤ 𝑉 ≤ 1 for fuzzy-valued 

n

f

0x
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function f.  Furthermore 

(𝐷∗
𝑣𝑓−)(𝑥0; 𝛼)=

1

Γ(1−𝑣)
 ∫

(𝑓−)′(𝑡,𝛼)𝑑𝑡

(𝑥−𝑡)𝑣

𝑥

𝑎
 

And 

(𝐷∗
𝑣𝑓+)(𝑥0; 𝛼)=

1

Γ(1−𝑣)
 ∫

(𝑓+)′(𝑡,𝛼)𝑑𝑡

(𝑥−𝑡)𝑣

𝑥

𝑎
 

So 

(gH𝐷∗
𝑣𝑓)(𝑥; 𝛼) =

1

𝛤(1−𝑣)
[min {∫

(𝑓−)′(𝑡,𝛼)𝑑𝑡

(𝑥−𝑡)𝑣

𝑥

𝑎
, ∫

(𝑓+)′(𝑡,𝛼)𝑑𝑡

(𝑥−𝑡)𝑣

𝑥

𝑎
} , 𝑚𝑎𝑥 {∫

(𝑓−)′(𝑡,𝛼)𝑑𝑡

(𝑥−𝑡)𝑣

𝑥

𝑎
, ∫

(𝑓+)′(𝑡,𝛼)𝑑𝑡

(𝑥−𝑡)𝑣

𝑥

𝑎
}] 

Lemma 2.1. Suppose that 𝑓: [𝑎, 𝑏] → ℜ𝐹  be a fuzzy-valued function and 𝑓𝑔𝐻
′ ∈ 𝐶𝐹[𝑎, 𝑏] ∩

𝐿𝐹[𝑎, 𝑏] Then (Allahviranloo et al., 2013) 𝐽𝑎
𝑣(gH𝐷∗

𝑣𝑓(𝑥))(𝑥) = 𝑓(𝑥) ⊝ 𝑔𝐻𝑓(𝑎), 0 ≤ 𝛼 ≤ 1. 

 ADOMIAN DECOMPOSITION METHOD UNDER FUZZY FRACTIONAL 3.

CAPUTO DERIVATIVE 

Consider a fuzzy Caputo fractional differential equation with fuzzy initial value as follows 

{
( 𝑔𝐻𝐷∗

𝑣𝑦(𝑡)) = 𝐹(𝑡, 𝑦(𝑡)) = 𝐿𝑦(𝑡) + 𝑁𝑦(𝑡)

𝑦(𝑡0) = 𝑦0 ∈ ℜ𝐹

        (3) 

So that 0 ≤ 𝑉 ≤ 1 and 𝐹: [𝑎, 𝑏] × ℜ𝐹 → ℜ𝐹  is supposed to be continuous. Also gH𝐷∗
𝑣 

denote the generalized Hukuhara Caputo derivative of y(t) which must be determined. Also  

is a linear operator and N represents the nonlinear operator.  

The Adomian supposes that the unknown function y(t) can be written by a sum of 

components as 

𝑦(𝑡) = ∑ 𝑦𝑖 ,∞
𝑖=0   

And so, the nonlinear operator  is represented by an in finite series as 

𝑁(𝑡) = 𝐴(𝑡) = ∑ 𝐴𝑖,

∞

𝑖=0

 

Such that 𝐴𝑖(𝑡) are called Adomian’s polynomials, given as 

𝐴𝑖 =
1

𝑖!

𝑑𝑖

𝑑𝜆𝑖
[𝑁(∑ 𝜆𝑗𝑦𝑗

∞
𝑗=0 )]

𝜆=0
                𝑖 = 0,1,2, …. 

Finally to calculate terms of series∑ 𝑦𝑖
∞
𝑗=0 , we use the iterated scheme that explain in 

theorem 3.1. 

Lemma3.1. Let 𝑦𝑖, 𝑖 = 0,1,2, … , 𝑛 be fuzzy continuous functions. Thus 

(gH 𝐷∗
𝑣 ∑ 𝑦𝑖

𝑛
𝑖=0 (𝑡)) = ∑ 𝐷∗

𝑣𝑦𝑖(𝑡).𝑛
𝑖=0   

Proof: We prove this lemma by mathematical induction and (i) -gH-differentiability. 
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Suppose that 

 

Thus 

 

Theorem 3.1. Assume that 𝑦(𝑡) = ∑ 𝑦𝑖
∞
𝑖=0  in Eq.(3.1), so that terms of series can be in the 

various types of differentiability. We consider four cases in this theorem.  

Case (I). Let 𝑦𝑖(t),     ∀i (i = 0,1, … ) is (i)-gH-differentiable, then 

        𝑦0(𝑡) = 𝑦0(𝑡0) 

𝑦𝑖(𝑡) = 𝐽𝑡0

𝑣 𝐿𝑦𝑖−1
(𝑡)⨁ 𝐽𝑡0

𝑣 𝐴𝑖−1(𝑡).    𝑖 = 1,2, …        (4) 

 

Case (II). Let 𝑦𝑖(t),     ∀i (i = 0,1, … ) is (ii)-gH-differentiable, then 

        𝑦0(𝑡) = 𝑦0(𝑡0) 

𝑦𝑖(𝑡) = 0 ̃ ⊖ (−1)𝐽𝑡0

𝑣 𝐿𝑦𝑖−1
(𝑡) ⊖ (−1) 𝐽𝑡0

𝑣 𝐴𝑖−1(𝑡).    𝑖 = 1,2, …      (5) 

 

Case (III). Let i is even, 𝑦𝑖(𝑡)   is (i)-gH-differentiable and j is odd, 𝑦𝑗(𝑡)  is 

(ii)-gH-differentiable, then 

      (6) 

Proof: Assume that 𝑦𝑖(t)   𝑖 = 0,1,2, …  is continues function. 

(I) Let 𝑦𝑖(t),     ∀i (i = 0,1, … ) is differentiable as in Definition 2.3 (i).Thus 

 

By the Riemann-Liouville integral of two side of above equation we have 
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Thus by suppose that  we find 

        𝑦0(𝑡) = 𝑦0(𝑡0) 

𝑦𝑖(𝑡) = 0 ̃ ⊖ (−1)𝐽𝑡0

𝑣 𝐿𝑦𝑖−1
(𝑡) ⊖ (−1) 𝐽𝑡0

𝑣 𝐴𝑖−1(𝑡).    𝑖 = 1,2, …       

 

(II) Suppose that  is differentiable as in Definition 2.3(ii).similar to proof 

of (i), we have 

, 

Thus 

⊝ ⊝  

Therefor 

        𝑦0(𝑡) = 𝑦0(𝑡0) 

𝑦𝑖(𝑡) = 0 ̃ ⊖ (−1)𝐽𝑡0

𝑣 𝐿𝑦𝑖−1
(𝑡) ⊖ (−1) 𝐽𝑡0

𝑣 𝐴𝑖−1(𝑡).    𝑖 = 1,2, …       

 

(III) Suppose that i is even, 𝑦𝑖 (𝑡) is differentiable according to Definition 2.3(i) and j is odd, 

𝑦𝑗(𝑡)  is differentiable as in Definition 2.3(ii). Thus  
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Therefor the proof is completed for even and odd indexes. 

 ADOMIAN DECOMPOSITION METHOD FOR SOLVING FUZZY CAPUTO’S 4.

FRACTIONAL DIFFERENTIAL EQUATIONS 

Convergence of the ADM to the exact solution is established for many kinds of problems. For 

instace, Fuzzy initial-value problems, Fuzzy linear systems, Boundary value problems, Partial 

differential equations and etc. (Abdelrazec & Pelinovsky, 2011; Adomian, 1988; Adomian, 1994; 

Abbaoui & Cherruault, 1994; Agarwal et al., 2010)  

In this section we are going to show the uniformly convergence of the successive iterations in 

theorem 3.1. into  as an application of ADM. To this end, we need some Lemmas.  
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Lemma 4.1. Adomian’s polynomials are bounded. It means , that 𝐷 is Hausdorff 

metric. 

Proof: 

 
𝑑𝑖

𝑑𝜆𝑖
[𝑁(∑ 𝜆𝑗𝑦𝑗

∞
𝑗=0 )]

𝜆=0
 is a polynomial that for  is  bounded. Thus the proof is completed. 

Remark 4.1. (𝑥 − 𝑠)𝑣−1 in fuzzy Riemann-Liouville integral is continuous and bounded. Thus we 

suppose that  ∫ |𝑥 − 𝑠|𝑣−1𝑡

𝑡0
𝑑𝑠 ≤ 𝑁. 

Theorem 4.1. Assume that Eq. (3.1) satisfies the following conditions 

(i) In the linear terms for  𝑖 ≥ 1, 𝐷(𝐿𝑦𝑖
(𝑡), 𝐿𝑦𝑖−1

(𝑡)) ≤ 𝑃  and 1 < 𝑃 < 𝑁−1  such that N is 

explained in Remark 4.1 . 

(ii) In the nonlinear terms for 𝑖 ≥ 1, 𝐷(𝐴𝑖(𝑡), 𝐴𝑖−1(𝑡)) ≤ 𝑀, and  1 < 𝑀 < 𝑃−1. 

Then the successive iterations in theorem 3.1. are uniformly convergent to 𝑦(𝑡) on [t0, a]. 

Proof: 

We prove the theorem for case (I). The proof of other cases is similar to case (I) that omitted here. 

By hypothesis, for case (I) we get 
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(9) 

For , we get 

(10) 

From (4.4) and by hypothesis, we obtain 

        (11) 

If we substitute (4.5) to (4.3) we will get 

 

By hypothesis and since  and , we can write 

 

So this guarantee that the sequence {yn (t)} is convergence and if we denote 𝑦(𝑡) = lim𝑛→∞ 𝑦𝑛 (𝑡). 

Then 𝑦(𝑡) satisfies Equation (3). 

By reasoning similar to case (I) the uniformly convergence of sequence {yi (t)} to 𝑦(𝑡) is 

established. 

 EXAMPLE 5.

We consider example has nonlinear part to illustrate the ADM. 

Example: Let us consider the nonlinear FFDE 
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From Formula (4), the approximate solutions expressed as 
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By ADM we have 
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Figure 1 shows the exact and approximate solutions. With Comparison between them we can see a 

good and acceptable converging of ADM. 

 

Figure 1: Comparison between exact and approximate solutions. 

 CONCLUSION 6.

In this paper, we used the Adomian decomposition method (ADM) to obtain an approximation for 

solution of fuzzy Caputo fractional differential equations. This method is so powerful and efficient that it 

give approximations of higher accuracy.  Also uniformly convergence of sequence {𝑦𝑖(𝑡)}  with 

various types of differentiability to the exact solution is proved. 
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