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Abstract 
The information of tire cornering stiffness and lateral states plays a 
key role in driver-assist technology. However, this information does 

not remain the same; and varies with the tire-road condition and driving 
environment. Therefore, in this paper, a robust estimator scheme is 
established to adapt the varying tire-road conditions; and estimate the real-
time information of tire cornering stiffness and lateral states of an Electric 
Vehicle (EV). Then, the proposed scheme's estimation accuracy is evaluated 
over two different driving tests, in which varying tire-road conditions are 
simulated along with distinct steering inputs. Finally, the simulation results 
exhibited an excellent estimation performance against uncertain driving 
conditions. 
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1 Introduction 
In recent years, Electric Vehicles (EVs) have gained massive attention in the automotive 

industry due it is environment-friendly nature and lower running cost. In EVs (Anwar & Chen, 

2007; Kim et al., 2011; Mihály et al., 2014), the real-time information of the tire cornering stiffness 
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coefficient and lateral states is a critical factor for incorporating the technologies, i.e. driver assist 

systems (Gietelink et al., 2006), drive-by-wire systems (Fukao et al., 2004; Pastorino et al., 2011; 

Ulrich, 2013; Wang et al., 2015) and automated driving (USDOT, 2020; SAE, 2014). However, this 

information does not remain the same and varies with the tire-road condition and driving 

environment. Therefore, many researchers have proposed different techniques for estimating the 

cornering stiffness coefficients and lateral states. 

In this regard, nonlinear observers (Amara et al., 2020) and Kalman Filter (KF) (Aydogdu & 

Levent, 2019; Witchayangkoon, 2000) based estimators have captured significant attention, such 

as, Hong et al. (2015) estimated 5-DOF vehicle states and parameters over the fixed steering input 

and constant tire-road conditions by using dual unscented KF. In (Rezaeian et al., 2013; Wenzel et 

al., 2006), the authors proposed dual extended KF to estimate the road friction and vehicle states. 

In (Imsland et al., 2006; Oh & Choi, 2012; Zhao et al., 2011), a nonlinear observer is designed with 

constant gain to observe longitudinal and lateral velocities. However, the observer gains should be 

selected to cope with the tire-road variations and driving environment. 

In this study, we have established an adaptive estimator scheme to adapt the tire-road 

variations and estimate the cornering coefficients and lateral states of EV by using the 

synchronized adaptive sliding mode observer (ASMO) (Du et al., 2016) and KF. In this scheme, the 

termination bounds are incorporated to prevent the estimator from overestimation and saturation. 

Finally, the estimation accuracy of the proposed scheme is investigated over varying tire-road 

conditions with distinct steering inputs. 

 
Figure 1: Bicycle Model. 

 

2 EV Lateral Dynamics 
In this paper, a continuous-time bicycle model is used to mimic the two-track EV model, see 

Figure 1.  The model consists of 2-degree of freedom represented as lateral velocity �̇�𝑦  and yaw rate 

�̇�𝜓.  For the lateral dynamics model, the longitudinal forces 𝐹𝐹𝑥𝑥𝑥𝑥 ,𝐹𝐹𝑥𝑥𝑥𝑥  are considered as zero by small-

angle approx. i.e., cos 𝜃𝜃 ≈ 1, sin 𝜃𝜃 ≈ 0.  Thus, the simplified lateral dynamics is defined as (Abe, 

2015; Pacejka & Besselink, 2012; Rajamani, 2012) 

𝑚𝑚��̈�𝑦 + 𝑉𝑉𝑥𝑥�̇�𝜓� = 𝐹𝐹𝑦𝑦𝑥𝑥 + 𝐹𝐹𝑦𝑦𝑥𝑥 (1), 

𝐼𝐼𝑧𝑧�̈�𝜓 = 𝑙𝑙𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 − 𝑙𝑙𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 (2), 
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where, 𝑚𝑚, 𝐼𝐼𝐼𝐼 are EV mass and moment of inertia, �̈�𝑦, �̈�𝜓 are lateral and yaw acceleration, 𝑙𝑙𝑥𝑥 , 𝑙𝑙𝑥𝑥 is the 

distance of the center of gravity from the front and rear axle; and 𝛿𝛿𝑥𝑥𝑓𝑓, is EV’s front wheel angle, 

respectively. For small slip angles 𝛼𝛼𝑥𝑥, 𝛼𝛼𝑥𝑥, the lateral forces 𝐹𝐹𝑦𝑦𝑥𝑥 ,𝐹𝐹𝑦𝑦𝑥𝑥  can be written as 

𝐹𝐹𝑦𝑦𝑥𝑥 = 2𝐶𝐶𝑥𝑥 �𝛿𝛿𝑥𝑥𝑓𝑓 −
�̇�𝑦+𝑙𝑙𝑓𝑓�̇�𝜓
𝑉𝑉𝑥𝑥

� (3), 

𝐹𝐹𝑦𝑦𝑥𝑥 = 2𝐶𝐶𝑥𝑥 �−
�̇�𝑦−𝑙𝑙𝑟𝑟�̇�𝜓
𝑉𝑉𝑥𝑥

� (4). 

Therefore, from Equations (1) to (4), the state-space model is represented as 

�̇�𝑥 = 𝑀𝑀𝑥𝑥 + 𝑁𝑁𝛿𝛿𝑥𝑥𝑓𝑓 (5), 

where 

𝑀𝑀 =

⎣
⎢
⎢
⎡ −2�𝐶𝐶𝑓𝑓+𝐶𝐶𝑟𝑟

𝑚𝑚𝑉𝑉𝑥𝑥
� −�𝑉𝑉𝑥𝑥 + 2 �𝑙𝑙𝑓𝑓𝐶𝐶𝑓𝑓−𝑙𝑙𝑟𝑟𝐶𝐶𝑟𝑟

𝑚𝑚𝑉𝑉𝑥𝑥
��

−2�𝑙𝑙𝑓𝑓𝐶𝐶𝑓𝑓−𝑙𝑙𝑟𝑟𝐶𝐶𝑟𝑟
𝐼𝐼𝑧𝑧𝑉𝑉𝑥𝑥

� −2 �
𝑙𝑙𝑓𝑓
2𝐶𝐶𝑓𝑓+𝑙𝑙𝑟𝑟2𝐶𝐶𝑟𝑟
𝐼𝐼𝑧𝑧𝑉𝑉𝑥𝑥

� ⎦
⎥
⎥
⎤
 (6). 

𝑥𝑥 = �
�̇�𝑦
�̇�𝜓� , 𝑁𝑁 = �

2𝐶𝐶𝑓𝑓
𝑚𝑚

2𝑙𝑙𝑓𝑓𝐶𝐶𝑓𝑓
𝐼𝐼𝑧𝑧

� (7) 

3 Synchronized Estimator Design 
Initially, we have designed the ASMO to observe the yaw-rate �̇�𝜓, and lateral-velocity �̇�𝑦; and 

then the KF is synchronized in parallel with the ASMO for estimating the cornering stiffness 

coefficients over the variable tire-road condition. The synchronized estimation framework is 

represented in Figure 2. 

It is considered that the EV is equipped with sensors, such as the yaw rate �̇�𝜓 and lateral 

acceleration 𝑎𝑎𝑦𝑦 are measured from IMU (Inertial Measurement Unit); and 𝑉𝑉𝑥𝑥 is obtained from a 

longitudinal speed sensor and wheel encoders. Moreover, the measurement model of lateral 

acceleration 𝑎𝑎𝑦𝑦, is defined as (Hong et al., 2015) 

𝑎𝑎𝑦𝑦,mes = �̈�𝑦 + 𝑉𝑉𝑥𝑥�̇�𝜓 (8). 

Furthermore, the lateral velocity is obtained by an integral strap-down model (Woodman, 

2007) formulated as 

�̇�𝑦(𝑡𝑡) = �̇�𝑦(𝑘𝑘 − 1) + ∫�𝑎𝑎𝑦𝑦,mes − 𝑉𝑉𝑥𝑥�̇�𝜓�𝑑𝑑𝑘𝑘 (9), 

where �̇�𝑦(𝑘𝑘 − 1) is the lateral velocity at an instant (𝑘𝑘 − 1). 

The integral strap-down of �𝑎𝑎𝑦𝑦,mes − 𝑉𝑉𝑥𝑥�̇�𝜓�lateral acceleration might integrate the small 

measurement noise, and the ASMO estimation can diverge over time. Therefore, a small forgetting 

factor 𝜎𝜎 (Benoussaad et al., 2015), is added to cancel out the measurement model's small noise. 

Thus, the integral strap-down model can be written as 

�̇�𝑦(𝑡𝑡) = �̇�𝑦(𝑘𝑘 − 1)(1 − 𝜎𝜎) + ∫�𝑎𝑎𝑦𝑦,mes − 𝑉𝑉𝑥𝑥�̇�𝜓�𝑑𝑑𝑘𝑘 (10). 
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To observe the lateral states of EV Equation (5); the generalized sliding mode observer 

(SMO) can be formulated as 

𝑦𝑦�̈ = −�𝑀𝑀11𝑦𝑦�̇ + 𝑀𝑀12𝜓𝜓�̇� + 𝑁𝑁1𝛿𝛿𝑥𝑥𝑓𝑓 + 𝐾𝐾1sign(𝑒𝑒1) (11), 

𝜓𝜓�̈ = −�𝑀𝑀21𝑦𝑦�̇ + 𝑀𝑀22𝜓𝜓�̇�+ 𝑁𝑁2𝛿𝛿𝑥𝑥𝑓𝑓 + 𝐾𝐾2sign(e2) (12), 

where 𝑒𝑒1 = �̇�𝑦 − 𝑦𝑦�̇, 𝑒𝑒2 = �̇�𝜓 − 𝜓𝜓�̇; 𝑀𝑀11,𝑀𝑀12,𝑁𝑁1 ,𝑁𝑁2 are the elements of state-space model Equation (6), 

such as, 𝑚𝑚0 and 𝐼𝐼𝑧𝑧0, are nominal parameters; 𝐾𝐾1 and 𝐾𝐾2 are the SMO gains, respectively.  

 

 
Figure 2: Synchronized estimation framework 

 
Therefore, the gains 𝐾𝐾1 ,𝐾𝐾2 must satisfy the given conditions, defined as 

𝐾𝐾1 > max{|𝑀𝑀11𝑒𝑒1| + |𝑀𝑀12𝑒𝑒2|} (13), 

𝐾𝐾2 > max{|𝑀𝑀21𝑒𝑒1| + |𝑀𝑀22𝑒𝑒2|} (14). 

The information of tire-road variation and driving environment are the key factors in the 

SMO design process. However, any inappropriate selection of gains 𝐾𝐾1 and 𝐾𝐾2 , can drastically 

reduce the performance of SMO, and in consequence, the lateral state estimation can deviate from 

the trajectory. 

In view of the abovementioned facts, the gain-adaptation-based SMO (Du et al., 2016) is 

proposed in this study. The proposed ASMO has the capability to tackle the uncertain tire-road 

conditions by adapting the new gains as per driving environment that robustly improves estimation 

performance. Thus, ASMO based lateral states Equations (11) and (12) are revised as 

𝑦𝑦�̈ = −�𝑀𝑀11𝑦𝑦�̇ + 𝑀𝑀12𝜓𝜓�̇� + 𝑁𝑁1𝛿𝛿𝑥𝑥𝑓𝑓 + 𝐾𝐾�1(𝑘𝑘)sign(𝑒𝑒1) (15), 

𝜓𝜓�̈ = −(𝑀𝑀21𝑦𝑦�̇ + 𝑀𝑀22𝜓𝜓�̇) + 𝑁𝑁2𝛿𝛿𝑥𝑥𝑓𝑓 + 𝐾𝐾�2(𝑘𝑘)sign(𝑒𝑒2) (16). 

Hence, the gain adaptation law for ASMO is expressed as 

𝐾𝐾�̇𝑖𝑖(𝑘𝑘) = �𝜌𝜌𝑖𝑖
|𝑒𝑒𝑖𝑖|, |𝑒𝑒𝑖𝑖| > 𝜀𝜀𝑖𝑖
0, otherwise (17), 
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where 𝑖𝑖 = 1,2; 𝐾𝐾�𝑖𝑖(𝑘𝑘) > 0, is a strictly positive adaptive gain; 𝜌𝜌𝑖𝑖, is a strictly positive constant used 

for adjusting the gain adaption speed; 𝜀𝜀𝑖𝑖 ≪ 1, is an adjustable small positive constant, which is used 

for activating the gain adaptation mechanism. Therefore, the gain adaptation will be stopped for a 

finite time when the error extents to selected bound |𝑒𝑒𝑖𝑖| ≤ 𝜀𝜀𝑖𝑖  in a finite time. 

Hence, to validate the convergence of ASMO; the Lyapunov candidate function 𝑉𝑉1 for lateral 

velocity is selected as 

𝑉𝑉1 = 1
2
𝑒𝑒12 + 1

2𝜌𝜌1
𝐾𝐾�1 (18), 

where 𝐾𝐾�1 = 𝐾𝐾�1 − 𝐾𝐾1, is an adaptive gain convergence error. 

Therefore, the time derivative of 𝑉𝑉1, is obtained as follows, such that, �̇�𝐾1 = 0: 

�̇�𝑉1 = 𝑒𝑒1�̇�𝑒1 +
1
𝜌𝜌1
𝐾𝐾�1𝐾𝐾�̇1 

= −𝑒𝑒1�𝑀𝑀11𝑒𝑒1 + 𝑀𝑀12𝑒𝑒2 + 𝐾𝐾�1sign(𝑒𝑒1)� + 1
𝜌𝜌1
𝐾𝐾�1𝐾𝐾�̇1  (19). 

≤ −𝑒𝑒1[𝑀𝑀11𝑒𝑒1 + 𝑀𝑀12𝑒𝑒2] − 𝐾𝐾�1|𝑒𝑒1| + �𝐾𝐾�1 − 𝐾𝐾1�|𝑒𝑒1| 
≤ −𝑒𝑒1[𝑀𝑀11𝑒𝑒1 + 𝑀𝑀12𝑒𝑒2] − 𝐾𝐾1|𝑒𝑒1| 

Thus, by considering Equation (13), 

�̇�𝑉1 ≤ 0.  

Similarly, for yaw rate convergence, the Lyapunov candidate function 𝑉𝑉2, is selected as 

follow, such that, �̇�𝐾2 = 0:  

𝑉𝑉2 = 1
2
𝑒𝑒22 + 1

2𝜌𝜌2
𝐾𝐾�2 (20) 

where 𝐾𝐾�2 = 𝐾𝐾�2 − 𝐾𝐾2, is an adaptive gain convergence error for 𝑉𝑉2. Likewise, the time derivative of 

𝑉𝑉2, will also asymptotically converge to zero, �̇�𝑉2 ≤ 0, by considering Equation (14). 

To prevent the ASMO from high-frequency chattering problem; the chattering component 

sign (𝑒𝑒𝑖𝑖) is substituted with the continuous linear function 𝑒𝑒𝑖𝑖 (|𝑒𝑒𝑖𝑖| + 𝜀𝜀𝑖𝑖)⁄ , such that Equations (15) 

and (16) can be revised as 

𝑦𝑦�̈ = −�𝑀𝑀11𝑦𝑦�̇ + 𝑀𝑀12𝜓𝜓�̇� + 𝑁𝑁1𝛿𝛿𝑥𝑥𝑓𝑓 + 𝐾𝐾�1(𝑘𝑘) 𝑒𝑒1
|𝑒𝑒1|+𝜀𝜀1

 (21) 

𝜓𝜓�̈ = −(𝑀𝑀21𝑦𝑦�̇ + 𝑀𝑀22𝜓𝜓�̇) + 𝑁𝑁2𝛿𝛿𝑥𝑥𝑓𝑓 + 𝐾𝐾�2(𝑘𝑘) 𝑒𝑒2
|𝑒𝑒2|+𝜀𝜀2

 (22) 

However, the estimation performance of the ASMO is mainly relying on the real-time 

information of 𝐶𝐶𝑥𝑥 and 𝐶𝐶𝑥𝑥, front and rear cornering stiffness coefficients; and this information 

cannot be measured directly from EV’s onboard sensors. 

Due to this fact, the Kalman filter (KF) (Simon, 2006) is added in parallel to ASMO for 

estimating the cornering stiffness coefficients under varying tire–road conditions as shown in 
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Figure 2. Then the sufficient set of estimated coefficients will be feedback to ASMO. The Kalman 

Filter algorithm (Shin, 2013; Simon, 2006) for cornering stiffness estimation is given as: 

1. Initialize: 
𝑤𝑤�0 = 𝐸𝐸[𝑤𝑤(0)]  
𝑃𝑃0 = 𝐸𝐸[(𝑤𝑤(0) − 𝑤𝑤�0)(𝑤𝑤(0) − 𝑤𝑤�0)𝑇𝑇]  

2. Prediction Update: 
𝑤𝑤�𝑘𝑘− = 𝑤𝑤�𝑘𝑘−1  
𝑃𝑃𝑘𝑘− = 𝑃𝑃k−1 + 𝑄𝑄  

3. Measurement Update: 
𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇 + 𝑅𝑅)−1  
𝑤𝑤�𝑘𝑘 = 𝑤𝑤�𝑘𝑘− + 𝐾𝐾𝑡𝑡(𝐼𝐼𝑘𝑘 − 𝐻𝐻𝑤𝑤�𝑘𝑘−)  
𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘−  

where, 𝑃𝑃, 𝑄𝑄, and 𝑅𝑅, represents the estimation error covariance, process noise covariance, and 

measurement noise covariance, respectively; and 𝑅𝑅 = 𝑟𝑟𝑠𝑠2, where 𝑟𝑟𝑠𝑠 , denotes the sensor zero-mean 

white noise. 

The 𝑤𝑤 and 𝐼𝐼, are defined as tire cornering stiffness coefficient vector and lateral acceleration 

measurement vector, such that: 

= �𝐶𝐶𝑥𝑥 𝐶𝐶𝑥𝑥�
𝑇𝑇, 𝐼𝐼 = 𝐻𝐻𝑤𝑤 (23), 

where 𝐼𝐼 = 𝑎𝑎𝑦𝑦   

𝐻𝐻 = �− 2
𝑚𝑚0
�𝑦𝑦
�̇+𝑙𝑙𝑓𝑓𝜓𝜓�̇

𝑉𝑉𝑥𝑥
− 𝛿𝛿𝑥𝑥𝑓𝑓�  − 2

𝑚𝑚0
�𝑦𝑦
�̇−𝑙𝑙𝑓𝑓𝜓𝜓�̇

𝑉𝑉𝑥𝑥
�� (24). 

It is to be noted that the 𝑤𝑤 is a constant vector. Therefore, its time derivative is taken as zero 

(�̇�𝑤 = 0). Thus, the Euler’s discretized form of 𝑤𝑤 and 𝐼𝐼, vectors can be defined as 

𝑤𝑤(𝑘𝑘) = 𝑤𝑤(𝑘𝑘 − 1) + 𝑞𝑞(𝑘𝑘) (25), 

𝐼𝐼(𝑘𝑘) = 𝐻𝐻𝑤𝑤(𝑘𝑘) + 𝑟𝑟(𝑘𝑘) (26), 

where, 𝑞𝑞 and 𝑟𝑟, represents the Gaussian white noise and measurement noise, respectively.  

For enhancing the convergence accuracy of KF, the residual 𝑒𝑒3 = 𝐼𝐼𝑘𝑘 − 𝐻𝐻𝑤𝑤�𝑘𝑘−, is utilized to 

switch on and off the estimator. Therefore, based on 𝑒𝑒3, abounded condition is designed, such that, 

when 𝑒𝑒3 extents to specified bound |𝑒𝑒3| ≤ 𝜀𝜀3, then the KF will switch off, and the estimated 

parameters will remain constant until and unless 𝑒𝑒3, does not exceed the specified bound again. 

Where 𝜀𝜀3 (𝜀𝜀3 > 0), is an adjustable positive constant. 

Thus, the KF estimation based ASMO for Equations (21) and (22) can be written as 

𝑦𝑦�̈ = −𝑀𝑀11(𝑤𝑤�𝑘𝑘−1)𝑦𝑦�̇ − 𝑀𝑀12(𝑤𝑤�k−1)𝜓𝜓�̇ + 𝑁𝑁1(𝑤𝑤�k−1)𝛿𝛿𝑥𝑥𝑓𝑓 + 𝐾𝐾�1(𝑘𝑘) 𝑒𝑒1
|𝑒𝑒1|+𝜀𝜀1

 (27) 

𝜓𝜓�̈ = −𝑀𝑀21(𝑤𝑤�k−1)𝑦𝑦�̇ − 𝑀𝑀22(𝑤𝑤�k−1)𝜓𝜓�̇ + 𝑁𝑁2(𝑤𝑤�k−1)𝛿𝛿𝑥𝑥𝑓𝑓 + 𝐾𝐾�2(𝑘𝑘) 𝑒𝑒2
|𝑒𝑒2|+𝜀𝜀2

 (28) 
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4 Simulation & Results 
In this section, the two distinct driving environments are simulated to evaluate the 

robustness and estimation accuracy of the synchronized ASMO and KF estimation scheme. 

Test#1 is carried out over variable road conditions, such as snowy, wet, and dry road 

conditions over the selected time range with sine-wave steering input.  Test#2 is conducted over 

constant road conditions with circular steering input and variable longitudinal speed. The EV 

parameters for the simulation are listed as 𝑚𝑚 = 1270 (kg), 𝐼𝐼𝑧𝑧 = 1537(kg. m2), 𝑙𝑙𝑥𝑥 = 1.015(m), 

𝑙𝑙𝑥𝑥 = 1.9(m), and sampling rate Δ𝑘𝑘 is selected as 0.001𝑠𝑠. 

Moreover, the ASMO and KF parameters are chosen as:  𝐾𝐾�1(0) = 𝐾𝐾�2(0) = 7.5, 𝜌𝜌1 = 𝜌𝜌2 = 9.5, 

𝜎𝜎 = 0.0015, 𝜀𝜀1 =  𝜀𝜀2 = 0.006, residual bound for 𝑒𝑒3: 𝜀𝜀lower = 8, 𝜀𝜀𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑥𝑥 = 2600, 𝑚𝑚0 = 1155 kg, 

𝐼𝐼𝑧𝑧0 = 1550 kg. m2, 𝑤𝑤�0 = [175 175]𝑇𝑇, 𝑃𝑃0 = 110000 × 𝐼𝐼2𝑥𝑥2, 𝑄𝑄 = (10 × 10−6)𝐼𝐼2×2, and 𝑟𝑟𝑠𝑠 = 0.0005. 

4.1 Variable Road Conditions with Constant Speed Test (Test#1) 
For Test#1, variable road conditions are simulated at a constant speed 𝑉𝑉𝑥𝑥 = 36 (km/h) for 60 

sec and road parameters are selected as snowy road 𝐶𝐶𝑥𝑥 = 558.5, 𝐶𝐶𝑥𝑥 = 698 (N/deg) for first 20 sec 

then wet road 𝐶𝐶𝑥𝑥 = 977.4, 𝐶𝐶𝑥𝑥 = 1222 (N/deg) for next 20 sec and dry road 𝐶𝐶𝑥𝑥 = 1400, 𝐶𝐶𝑥𝑥 =

1745 (N/deg) for last 20 sec. The sin-wave steering input angle is generated by: 
𝛿𝛿𝑑𝑑 = 16.5 sin(0.5𝜋𝜋𝑘𝑘) deg 

 
Figure 3: Sine-wave steering angle input 

(Test#1). 
 

 
Figure 4: Estimated cornering stiffness 

(Test#1). 
 

 
Figure 5: Estimated lateral velocity 

(Test#1). 
 

 
Figure 6: Estimated yaw rate 

(Test#1). 
 

We can see from Figures 3-6 that the proposed synchronized ASMO and KF estimator 

robustly deal with all three road variations; and estimated the cornering coefficients and lateral 
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states within the locality of simulated values.  Moreover, Figure 4 shows that the estimated 

cornering coefficients also satisfied the termination bound 𝑒𝑒3 and remain persistent in all snowy, 

wet, and dry road conditions, respectively. 

4.2 Constant Road Condition with Variable Speed Test 
This test is conducted over constant road condition such as the dry road parameters are 

selected as: 𝐶𝐶𝑥𝑥 = 1400 (N/deg), 𝐶𝐶𝑥𝑥 = 1746 (N/deg). In this test, it also considered that the EV is 

maneuvering over the circular track by using circular steering input with variable longitudinal 

speed, as shown in Figures 7 and 8, respectively. 

 

 
Figure 7: Variable longitudinal speed input 

(Test#2). 
 

 
Figure 8: Circular steering angle input  

(Test#2). 
 

 
Figure 9: Estimated cornering coefficients  

(Test#2). 
 

 
Figure 10: Estimated lateral velocity  

(Test#2). 

 
Figure 11: Estimated yaw rate  

(Test#2). 
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It can be seen from Figure 9 that both the front and rear estimated cornering stiffnesses are 

not only converged to selected 𝐶𝐶𝑥𝑥, front stiffness coefficient at variable speed but also prevented 

the estimator from overestimation. Moreover, in this test the lateral velocity and yaw rate are also 

estimated very closely, such that, the estimation error remains under bounded condition over the 

entire circular track as shown in Figures 10–11. 

 

5 Conclusion 
In this paper, we have established a synchronized ASMO and KF estimator scheme to 

estimate the cornering stiffness coefficients and lateral states of EV over variable road conditions 

with distinct steering inputs. The proposed scheme exhibited robust performance against the 

driving environment variations in both tests and intelligently estimated the sufficient gains to deal 

with the snowy, wet and dry road conditions. In simulation and results, it is validated that the 

estimated lateral states and stiffness coefficients converged to the neighborhood of the simulated 

system. Moreover, the proposed scheme also satisfied the termination bond conditions that not 

only prevented the estimator from overestimating the cornering coefficients but also from 

saturation.  Future work should investigate the effect of lateral load shift over split-mu to estimate 

the nonlinear behavior of lateral states. 

 

6 Availability of Data And Material 
Data can be made available by contacting the corresponding author. 
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