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Abstract 
This study employs the linear and non-linear time series models 
(ARIMA) and (ANN) for Karachi stock exchange prices prediction. 

Further that the comparison between two-time series models was examined 
in this study. The results indicated that the capability of the ARIMA model is 
appropriate for short-term prediction and the ANN model is applicable for 
forecasting the future price towards value prediction. This study results 
demonstrated that the pattern of the ARIMA model was directional towards 
stock market prices prediction and the ANN model was towards value 
prediction. 
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1 Introduction 
Stock market forecasting is a common goal of investors and researchers. The stock market 

provides a platform to investors where they can buy and sell shares. An accurate movement of stock 

prices prediction may produce profits for investors (Jayasuriya & Dulani 2017). The stock market is 

an equity market and is a place where publically held companies are traded and issued securities, 

bonds, shares over exchanges or over-the-counter markets (Korir 2018). According to recent 

literature stock market is dynamic, complex in nature and practically has a non-linear pattern of 

time series data (Hiransha, et al. 2018). Time series is a set of observations observed at a specific 

time to obtain the status of some activity (Coskun, et al. 2009). There is a wider range of time series 
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forecasting techniques and approaches used to obtain accurate predictions (Ayasuriya & Dulani 

2017). Estimating an efficient model for the stock market data analysis and forecasting of stock 

market prices is a very difficult task due to its complexity in nature. Box & Jenkins et al. (1970) 

developed an ARMA/ARIMA model. This model is a more popular modeling technique mostly used 

for investigation and forecasting of a linear pattern of the dataset and is in exercise for decades 

(Wang, et al. 2012; Pandey and Bajpai 2019). ARIMA model is a traditional modeling technique its 

uses are wide for stock market forecasting (Almasarweh and Wadi 2018; C. Wang 2011).  ANN 

model has demonstrated its potential to capture the non-linear pattern of the dataset and has 

attracted the overwhelming attention of researchers for time series modeling and forecasting 

(Wang, et al. 2012; Adebiyi et al. 2014). For the past several years, ANN modeling for stock 

exchange forecasting is in practice (Hiransha, et al. 2018). Stock exchange historical data prediction 

using the ANN model produced significantly more accurate results than the traditional linear and 

non-linear prediction models (Chiang, et al. 2007; Pandey and Bajpai 2019).    

Karachi stock exchange (KSE) is the oldest and biggest stock market of Pakistan, established 

on the 18th of September 1947. Its first index was introduced in 1991 as the KSE-50 share index and 

established with top 50 companies on open and cry structure. Currently, KSE has four indexes 

known as; (i) KSE 100- Index (ii) KSE all-share index (iii) KSE-30 share index, and (iv) KMI-30 

index. We used KSE 100 Index dataset in this study. 

This study’s objective is to investigate and compare the forecasting accuracy of two-time 

series models ARMA/ARIMA and ANN models using the KSE 100-Index dataset. 

2 Literature Review 
Several research studies have been conducted on the estimation, modeling, and forecasting 

of stock market prices with different solution techniques proposed by various authors over the 

years. Wang et al. (2012) stated forecasting procedures fall into two broad classes (i) Statistical 

computing techniques and (ii) Soft computing techniques. Statistical computing procedure 

comprised of several techniques like as exponential smoothing technique, autoregressive 

integrated moving average (ARIMA) model, and generalized autoregressive conditional 

heteroskedasticity (GARCH) volatility model (Adebiyi et al. 2014; Wang et al. 2012; Franses and 

Ghijsels 1999). Box & Jenkins (1970) introduced an ARMA/ARIMA model which undertakes the 

future values of the variable should be in a linear form based on past several variables. 

ARMA/ARIMA model was constructed with three parametric components comprised of 

autoregressive (AR), integration (I) and moving average (MA) components).  ARMA/ARIMA has 

commonly used as an efficient technique for forecasting social sciences and is most extensively 

used for time serimodelinging (Adebiyi et al. 2014). Tabachnick et al. (2001) and Zhang (2003) 

reported probabilistic evaluation and forecasting of the ARMA/ARIMA model is essential because 

these techniques do not assume the underlying knowledge as some other techniques practice. 

Meyler et al. (1998) stated ARMA/ARIMA model often surpassed the most sophisticated models in 

relation to its short-short-runshiplling ability. 
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Some preceding literature concentrated on forecasting stock exchange returns with artificial 

intelligence techniques. The most intelligent technique used for financial market forecasting is the 

artificial neural network (ANN) technique. Zhang et al. (2005) reported ANN model identifies the 

hidden practical relationships in the dataset perfectly. Jayasuriya & Dulani (2017) testified different 

types of ANN models and found these models have acceptably predicted the stock exchange returns 

and its movement direction. Dase & Pawar (2010) described ANN techniques applied most 

frequently for stock market prediction and as the most efficient and faster technique than the other 

forecasting techniques for larger datasets prediction. White (1989) stated ANN is generally a 

functional approximator and draws conclusions accurately to any nonlinear form of a dataset.  

White (1989) defined ANN are universal function approximators and can plot any non-linear 

function. Masters (1993) identified ANN as a powerful technique for pattern recognization 

classification and forecasting and is less sensitive to the error term assumption. Furthermore, the 

advantages of ANN modeling are better for fault tolerance. Its robustness and flexibility are linked 

with the expert systems for a large number of the interrelated processing components and allow 

improvements for new patterns (Lipman 1987; Trippi & Turban 1992).  

Lee et al. (2007) compared the performance of the NN and SARIMA model using (KOSPI) 

Korean stock exchange data and found the NN model performed well. Yao et al. (1999)  investigated 

the performance of the ANN and ARIMA model using Kuala Lumpur stock exchange data and 

explored ANN has better forecasting ability than the conventional statistical ARMA/ARIMA model. 

Wijaya et al. (2010) equated the stock exchange prediction results of ANTP (PT Aneka Tambang) an 

Indonesia stock exchange through ANN and ARIMA modeling and established forecasting with 

ANN model had smaller error than the ARIMA model.  

3 Data and Methodology 
The objectives of the study are estimation, modeling and comparison of prediction 

performance of ARMA/ARIMA and ANN model. In this study, secondary data of the KSE 100 Index 

comprising of the daily closing price index was used. The chosen dataset was obtained from 

http://finance.yahoo.com for a period of 01-01-1990 to 31-12-2019. The dataset consists of 7241 

daily observations. The tool used in the study was R software version 3.6.2. 

3.1 ARMA/ARIMA Model 
Box & Jenkins (1976) introduced an ARMA/ARIMA model. This model is also discussed as 

the Box-Jenkins technique consists of a set of actions that identify, estimate and diagnose the time 

series data. The Box-Jenkins methodology ARMA/ARIMA model is the most conspicuous technique 

of the study in financial time series prediction (Pie & Lim 2005; Merh et al. 2010; Nochai & Titida 

2006). Box-Jenkins ARMA/ARIMA model has efficient capability in producing short term 

predictions for nonlinear time series datasets and constantly overtook the structure of complex 

models for short term prediction (Meyler et al. 1998). Box-Jenkins ARMA/ARIMA model generates 

the future values of a variable is to be a linear combination of historical prices and previous errors 

terms displayed as follows. 
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Yr =   ∅0 + ∅1Yr−1 +  ∅2Yr−2 + ⋯+ ∅pYr−p +  εr −  θ1Yr−1 −  θ2Yr−2 − ⋯− θqYr−q..

 (1), 

where Yr represents actual values random error term of r time is εr, ∅i, θj are the coefficients of the 

model and p, q are integers that are often referred to as auto regressive and moving averages terms 

for the model respectively. 

The ARMA/ARIMA model is constructed as a predictive model and consists of three steps 

identification of the model, estimation of the parameter, and diagnostic checking (Tabachnick et al. 

2001). We used in this study auto-arima functions of the R software version 3.6.2 to select the best 

ARMA/ARIMA model order and analyzed the residuals of the selected model with the Ljung Box 

test. 

3.2 Artificial Neural Network Model 
The knowledge of neural networks was introduced by human beings’ nervous system which 

contains a number of simple processing units called neurons (Jayasuriya & Dulani 2017; Naeini et 

al. 2010). ANN model is a nonlinear type of modeling technique and is generally used to examine 

the nonlinear pattern of the dataset (Zhang 2003). Recent literature has exposed single hidden 

layer feed-forward neural network model is used most extensively for time series modeling (Zhang 

et al. 1998). ANN model is a machine learning technique to make decisions and attempts to mimic 

the system of learning from the working of the human brain for making decisions (Tsay 2010). Its 

function mimics biological neurons whose structure comprises a group of artificial neurons and are 

interlinked with the developed networks. The basics of the neuron for learning the system are 

inputs, Weight, Summation Functions, Transformation function and output. Similar to the human 

brain the process of networks is required to differentiate between the patterns for improvement, 

generalization and to learn the system towards increasing the performance. Therefore the ANN is a 

powerful tool to explain the problems it has an appropriate capacity of estimation, forecasting and 

classification. Mathematically ANN model can be written as  

yt = f(y, w) +  ε.. (2), 

where y is the explanatory variable, w is a vector for weight parameter and ε is the component for 

random error. Following equation (4) is used for the estimation and prediction of unknown 

functions from the available data. 

Our study considered three layers’ neural network model through simple processing units 

and associated with the acyclic links. Mathematically the relation between output values (yt) and 

the inputs values (yt−1, yt−2,⋯ , yt−p) are presented as 

yt =  α0 +  ∑ αjg(β0j + ∑ βijyt−i) + p
i=1 εt

q
j=1 … (3), 

αj (j= 0,1,2,….,q), βij (i = 0,1,2,….,p, j= 1,2,…..,q) are the parameters of the studied model and 

identified as connection weights. In-network p and q are the total number of input nodes and total 
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no of hidden nodes. The hidden layer transformation function or sigmoid function is denoted by 

g(x) and written as 

g(x) =  1
1+exp (−x)

 (4). 

Equation (3) performs as a nonlinear function and obtains information from the historical 

observations found as (yt−1, yt−2,⋯ , yt−p) to predict the future value denoted by yt i.e. 

yt = f�yt−1,yt−2 , … . yt−p, w� + εt (5). 

Here w is the vector for the parameters and f is shown as the function through the network 

and connection weight. The ANN model is similar to a nonlinear autoregressive model. It is a 

powerful network and it has the ability to estimate an arbitrary function when the hidden node (q) 

in the network is sufficiently large in number (Hornik 1990). The simple ANN structure with the 

smallest number of hidden nodes mostly performed well for the prediction of out-of-training 

samples and may be the cause of overfitting which effect typically and found in the neural network 

modeling process (Zhang 2003). The overfitted model shows a good fit to the sampled data and in 

general, its prediction performance for out-of-training sample data is poor (Zhang 2003). The 

choice for hidden nodes “q” is data-dependent and there is no systematic rule for determining this 

type of parameter.  

4 Model performance measurement   
The following three methods were used to measure the forecasting performance of the study     

i. Actual and forecasted values are compared with a graph of the training procedure. 

ii. Comparison of statistical parameters like coefficient of determinant R2,  root mean 

squared error (RMSE), mean absolute error (MAE), MAPE (mean absolute percentage error), 

normalized mean squared error (NMSE). MAE and NMSE Equations (8) and (9) are the statistical 

parameters used to estimate the relationship between the actual and predicted values (Jenkins et al. 

1970;   Kashi & Mehdi 2010). If the results are not reliable using the abcriteriaia’s then it is 

useful to apply MAPE equation (7) (Makridakis 1993).  

iii. Prediction accuracy of ANN model for testing dataset (out of sample) was analyzed 

with DA (directional accuracy) equation (10) higher DA will produce better forecast (Wang, et al. 

2012). 

RMSE =  �∑ (Yr−Y�r) 2n
r=1

n
�
1/2

 (6), 

MAPE =  1
n

 ∑ | (Yr − Y�r)/Yr|n
r=1  (7), 

MAE =  1
n

 ∑ | Yr − 𝑌𝑌�𝑟𝑟|n
r=1    (8), 

NMSE =  1
n
∑ (Yr−Y�r)2

σ2 Y�r
n
r=1     (9), 

DA =  100
n
∑ drn
r=1    (10), 
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where  dr =  �1 = � Yr −  Y(r−1)��Y�(r) − Y�(r−1)� ≥ 0
0 =                   otherwise                        

  

5 Results and discussion 

5.1 Box Jenkins ARIMA Model 
The closing prices index was converted into logarithmic series following (Campbell and 

Walker 1977). The whole period of the study is divided into two parts the training dataset or in-

sample for N observations estimation and testing dataset the out-of-sample or validation period for 

T-N observations for prediction. 

 
Table 1: Descriptive statistics & Augmented Dickey-Fuller test  

Logarithmic series Mean S.D Skewness Kurtosis JB T 
8.61 1.354 0.078 -1.615 586.19* 7241 

Stationary series 0.00058 0.014 -0.200 9.190 11606* 7240 
Augmented Ducky-Fuller (ADF) test 

Estimates Series Logarithmic series Stationary series 
ADF test -2.320 -16.392 
Lag order 19 19 
p-value 0.443 0.01 

Note: JB is Jarque Bera Normality test and * denotes significance level at 5 percent level 
 

 
Figure 1: (a) KSE 100 index log(prices) (b) Stationary series correlogram 

 
Table 1 displayed descriptive statistics for logarithmic and stationary series of KSE 100 index 

daily closing prices. Skewness and kurtosis were found at 0.078 and -1.615 respectively which 

showed the dataset was not stationary (Figure 1a), likewise, it was confirmed with the ADF test. 

After applying the first difference to the logarithmic series the series was found stationary as 

presented in Figure 1b and confirmed with the ADF test (Table 1). JB test rejected the null 

hypothesis for the presence of normality in logarithmic and stationary series (Table 1). 
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Table 2: Selected ARIMA order (1, 1, 2), Evaluation criteria & Error measurement 
Variable ar1 ma1 ma2 drift 

Coefficients 0.894 -0.765 -0.074 0.0006 
Standard error 0.031 0.033 0.014 0.0003 

Diagnostic of selected ARIMA order (1,1,2) and training dataset error measurement 
AIC BIC RMSE MAE MAPE 

40951.9 -40917.8 0.0141 0.0096 0.117 
Evaluation criteria of the testing dataset 

Criteria RMSE MAE MAPE NMSE DA 
Coefficients 2022.355 1677.169 0.0415 1.726 6697.294 

 

Table 3: Box-Ljung test of ARIMA order (1, 1, 2) & Correlation. 
df 5 10 15 20 

X-squared 0.937 8.323 8.918 21.138 
p-value 0.967 0.597 0.882 0.389 

Correlation between actual and Forecasted prices 
Correlation Actual Forecasted 

Actual 1.000 0.911 
Forecasted 0.911 1.000 

 
Figure 2: Actual and forecasted prices 

 
Table 2 showed the diagnostic of selected ARIMA order (1,1,2) with standard error and drift 

analyzed for training dataset using smallest values of AIC (Akaike Information Criteria) and BIC 

(Bayesian Information Criterion). The evaluation criteria for the training dataset were obtained 

with the smallest values of RMSE, MAE, MAPE and testing dataset also with smallest values of 

RMSE, MSE, MAPE, NMSE and higher value of DA which represents the best fit of the predicted 

model (Table 2). Box-Ljung test of autocorrelation was applied on residuals of the forecasted model 

for various degrees of freedom and found not significant which disclosed there is no 

autocorrelation present in the residuals of forecasted model (Table 3).  Next 30 days prices were 

predicted and compared with the actual testing data set (Figure 2). The coefficient of correlation 

was investigated 0.912 between the actual testing dataset and predicted values (Table 3). Analysis 

of the study revealed that the prediction of the ARIMA model was directional and appropriate for 

short-term prediction. These results were also supported by the study of Khashei & Bijari (2010); 

Adebiyi et al. (2014) and Pieleanu (2016). 
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5.2 ANN model 
In the ANN modeling, 7241 observations were used in which 7211 observations were 

analyzed for the in-sample training period and 30 observations for of sample testing period. The 

training dataset error was found at 0.058 using 59728 steps (Figure 3) and estimated r2 = 98.9 

(Figure 4) similar results were also found by Anwar and Mikami, (2011). 

 
Figure 3: Neural network model with lags 

 
Table 4: Evaluation critera & Correlation. 

Variables RMSE MAE MAPE NMSE DA 
Coefficients 0.01859 0.00852 0.00853 0.12007 0.000708 

Correlation between actual and forecasted prices 
Variables Actual Forecasted 

Actual 1.000 0.943 
Forecasted 0.943 1.000 

 

 
Figure 4: Regression line on the scattered plot 

 
Figure 5: Actual and forecasted prices 
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Table 4 showed the evaluation criteria of the testing data set. The smallest values of RMSE, 

MAE, MAPE, NMSE and highest values of DA were selected. The coefficient of correlation for the 

testing data set was found 0.9432 (Table 4). In addition to that ANN model was found appropriate 

for value prediction for stock prices. Our findings are supported by the study of Adebiyi et al. (2014; 

Pandey and Bajpai (2019). 

6 Conclusion 
Time series modeling is a dynamic area of research over the preceding few decades. 

Forecasting accuracy is an important topic to many decision analysts and hence the search for 

improving the effectiveness of forecasting has never been stopped. In this paper, we proposed 

linear and non-linear time series modeling for KSE 100- Index. The empirical results of the study 

shown the ANN model performed better than the ARIMA model. ARIMA model performed better 

for short-term prediction using KSE 100-Index. Furthermore, the prediction performance of the 

ARIMA model was satisfactory and we can say that the performance of the ARIMA model was 

acceptable for the short-term prediction. 

7 Availability of Data and Material 
Data can be made available by contacting the corresponding author. 
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